Commit graph

508 commits

Author SHA1 Message Date
8ac5159adc
dataset_mono: simplify param passing, onehot+threshold water depth data 2022-11-11 18:23:50 +00:00
3a3f7e85da
typo 2022-11-11 18:03:09 +00:00
3313f77c88
Add (untested) mono rainfall → water depth model
* sighs *
Unfortunately I can't seem to get contrastive learning to work.....
2022-11-10 22:36:11 +00:00
ce194d9227
slurm: customise log file names 2022-11-10 21:09:34 +00:00
9384b89165
model_segmentation: spare → normal crossentropy, activation functions at end 2022-11-10 20:53:37 +00:00
b6676e7361
switch from sparse to normal crossentropy 2022-11-10 20:50:56 +00:00
d8be26d476
Merge branch 'main' of git.starbeamrainbowlabs.com:sbrl/PhD-Rainfall-Radar 2022-11-10 20:49:01 +00:00
b03388de60
dataset_segmenter: DEBUG: fix water shape 2022-11-10 20:48:21 +00:00
daf691bf43
typo 2022-11-10 19:55:00 +00:00
0aa2ce19f5
read_metadata: support file inputs as well as dirs 2022-11-10 19:53:30 +00:00
aa7d9b8cf6
fixup 2022-11-10 19:46:09 +00:00
0894bd09e8
train_predict: add error message for parrams.json not found 2022-11-10 19:45:41 +00:00
0353072d15
allow pretrain to run on gpu
we've slashed the size of the 2nd encoder, so ti should fit naow?
2022-11-04 17:02:07 +00:00
44ad51f483
CallbackNBatchCsv: bugfix .sort() → sorted() 2022-11-04 16:40:21 +00:00
4dddcfcb42
pretrain_predict: missing \n 2022-11-04 16:01:28 +00:00
1375201c5f
CallbackNBatchCsv: open_handle mode 2022-11-03 18:29:00 +00:00
3206d6b7e7
slurm: rename segmenter job name 2022-11-03 17:12:27 +00:00
f2ae74ce7b
how could I be so stupid..... round 2 2022-11-02 17:38:26 +00:00
5f8d6dc6ea
Add metrics every 64 batches
this is important, because with large batches it can be difficult to tell what's happening inside each epoch.
2022-10-31 19:26:10 +00:00
cf872ef739
how could I be so *stupid*...... 2022-10-31 18:40:58 +00:00
da32d75778
make_callbacks: display steps, not samples 2022-10-31 18:36:28 +00:00
dfef7db421
moar debugging 2022-10-31 18:26:34 +00:00
172cf9d8ce
tweak 2022-10-31 18:19:43 +00:00
dbe35ee943
loss: comment l2 norm 2022-10-31 18:09:03 +00:00
5e60319024
fixup 2022-10-31 17:56:49 +00:00
b986b069e2
debug party time 2022-10-31 17:50:29 +00:00
458faa96d2
loss: fixup 2022-10-31 17:18:21 +00:00
55dc05e8ce
contrastive: comment weights that aren't needed 2022-10-31 16:26:48 +00:00
33391eaf16
train_predict/jsonl: don't argmax
I'm interested inthe raw values
2022-10-26 17:21:19 +01:00
74f2cdb900
train_predict: .list() → .tolist() 2022-10-26 17:12:36 +01:00
4f9d543695
train_predict: don't pass model_code
it's redundant
2022-10-26 17:11:36 +01:00
1b489518d0
segmenter: add LayerStack2Image to custom_objects 2022-10-26 17:05:50 +01:00
48ae8a5c20
LossContrastive: normalise features as per the paper 2022-10-26 16:52:56 +01:00
843cc8dc7b
contrastive: rewrite the loss function.
The CLIP paper *does* kinda make sense I think
2022-10-26 16:45:45 +01:00
fad1399c2d
convnext: whitespace 2022-10-26 16:45:20 +01:00
1d872cb962
contrastive: fix initial temperature value
It should be 1/0.07, but we had it set to 0.07......
2022-10-26 16:45:01 +01:00
f994d449f1
Layer2Image: fix 2022-10-25 21:32:17 +01:00
6a29105f56
model_segmentation: stack not reshape 2022-10-25 21:25:15 +01:00
98417a3e06
prepare for NCE loss
.....but Tensorflow's implementation looks to be for supervised models :-(
2022-10-25 21:15:05 +01:00
bb0679a509
model_segmentation: don't softmax twice 2022-10-25 21:11:48 +01:00
f2e2ca1484
model_contrastive: make water encoder significantly shallower 2022-10-24 20:52:31 +01:00
a6b07a49cb
count water/nowater pixels in Jupyter Notebook 2022-10-24 18:05:34 +01:00
a8b101bdae
dataset_predict: add shape_water_desired 2022-10-24 18:05:13 +01:00
587c1dfafa
train_predict: revamp jsonl handling 2022-10-21 16:53:08 +01:00
8195318a42
SparseCategoricalAccuracy: losses → metrics 2022-10-21 16:51:20 +01:00
612735aaae
rename shuffle arg 2022-10-21 16:35:45 +01:00
c98d8d05dd
segmentation: use the right accuracy 2022-10-21 16:17:05 +01:00
bb0258f5cd
flip squeeze operator ordering 2022-10-21 15:38:57 +01:00
af26964c6a
batched_iterator: reset i_item after every time 2022-10-21 15:35:43 +01:00
c5b1501dba
train-predict fixup 2022-10-21 15:27:39 +01:00
42aea7a0cc
plt.close() fixup 2022-10-21 15:23:54 +01:00
12dad3bc87
vis/segmentation: fix titles 2022-10-21 15:22:35 +01:00
0cb2de5d06
train-preedict: close matplotlib after we've finished
they act like file handles
2022-10-21 15:19:31 +01:00
81e53efd9c
PNG: create output dir if doesn't exist 2022-10-21 15:17:39 +01:00
3f7db6fa78
fix embedding confusion 2022-10-21 15:15:59 +01:00
847cd97ec4
fixup 2022-10-21 14:26:58 +01:00
0e814b7e98
Contraster → Segmenter 2022-10-21 14:25:43 +01:00
1b658a1b7c
train-predict: can't destructure array when iterating generator
....it seems to lead to undefined behaviour or something
2022-10-20 19:34:04 +01:00
aed2348a95
train_predict: fixup 2022-10-20 15:42:33 +01:00
cc6679c609
batch data; use generator 2022-10-20 15:22:29 +01:00
d306853c42
use right daataset 2022-10-20 15:16:24 +01:00
59cfa4a89a
basename paths 2022-10-20 15:11:14 +01:00
4d8ae21a45
update cli help text 2022-10-19 17:31:42 +01:00
200076596b
finish train_predict 2022-10-19 17:26:40 +01:00
488f78fca5
pretrain_predict: default to parallel_reads=0 2022-10-19 16:59:45 +01:00
63e909d9fc
datasets: add shuffle=True/False to get_filepaths.
This is important because otherwise it SCAMBLES the filenames, which is a disaster for making predictions in the right order....!
2022-10-19 16:52:07 +01:00
fe43ddfbf9
start implementing driver for train_predict, but not finished yet 2022-10-18 19:37:55 +01:00
b3ea189d37
segmentation: softmax the output 2022-10-13 21:02:57 +01:00
f121bfb981
fixup summaryfile 2022-10-13 17:54:42 +01:00
5c35c0cee4
model_segmentation: document; remove unused args 2022-10-13 17:50:16 +01:00
f12e6ab905
No need for a CLI arg for feature_dim_in - metadata should contain this 2022-10-13 17:37:16 +01:00
e201372252
write quick Jupyter notebook to test data
....I'm paranoid
2022-10-13 17:27:17 +01:00
ae53130e66
layout 2022-10-13 14:54:20 +01:00
7933564c66
typo 2022-10-12 17:33:54 +01:00
dbe4fb0eab
train: add slurm job file 2022-10-12 17:27:10 +01:00
6423bf6702
LayerConvNeXtGamma: avoid adding an EagerTensor to config
Very weird how this is a problem when it wasn't before..
2022-10-12 17:12:07 +01:00
32f5200d3b
pass model_arch properly 2022-10-12 16:50:06 +01:00
5933fb1061
fixup 2022-10-11 19:23:41 +01:00
c45b90764e
segmentation: adds xxtiny, but unsure if it's small enough 2022-10-11 19:22:37 +01:00
f4a2c742d9
typo 2022-10-11 19:19:23 +01:00
11f91a7cf4
train: add --arch; default to convnext_i_xtiny 2022-10-11 19:18:01 +01:00
5666c5a0d9
typo 2022-10-10 18:12:51 +01:00
131c0a0a5b
pretrain-predict: create dir if not exists 2022-10-10 18:00:55 +01:00
deede32241
slurm-pretrain: limit memory usage 2022-10-10 17:45:29 +01:00
13a8f3f511
pretrain-predict: only queue pretrain-plot if I we output jsonl 2022-10-10 17:11:10 +01:00
ffcb2e3735
pretrain-predict: queue for the actual input 2022-10-10 16:53:28 +01:00
f883986eaa
Bugfix: modeset to enable TFRecordWriter instead of bare handle 2022-10-06 20:07:59 +01:00
e9a8e2eb57
fixup 2022-10-06 19:23:31 +01:00
9f3ae96894
finish wiring for --water-size 2022-10-06 19:21:50 +01:00
5dac70aa08
typo 2022-10-06 19:17:03 +01:00
2960d3b645
exception → warning 2022-10-06 18:26:40 +01:00
0ee6703c1e
Add todo and comment 2022-10-03 19:06:56 +01:00
2b182214ea
typo 2022-10-03 17:53:10 +01:00
92c380bff5
fiddle with Conv2DTranspose
you need to set the `stride` argument to actually get it to upscale..... :P
2022-10-03 17:51:41 +01:00
d544553800
fixup 2022-10-03 17:33:06 +01:00
058e3b6248
model_segmentation: cast float → int 2022-10-03 17:31:36 +01:00
04e5ae0c45
model_segmentation: redo reshape
much cheese was applied :P
2022-10-03 17:27:52 +01:00
deffe69202
typo 2022-10-03 16:59:36 +01:00
fc6d2dabc9
Upscale first, THEN convnext... 2022-10-03 16:38:43 +01:00
6a0790ff50
convnext_inverse: add returns; change ordering 2022-10-03 16:32:09 +01:00
fe813cb46d
slurm predict: fix plotting subcall 2022-10-03 16:03:26 +01:00
e51087d0a9
add reshape layer 2022-09-28 18:22:48 +01:00
a336cdee90
and continues 2022-09-28 18:18:10 +01:00
de47a883d9
missing units 2022-09-28 18:17:22 +01:00
b5e08f92fe
the long night continues 2022-09-28 18:14:09 +01:00
dc159ecfdb
and again 2022-09-28 18:11:46 +01:00
4cf0485e32
fixup... again 2022-09-28 18:10:11 +01:00
030d8710b6
fixup 2022-09-28 18:08:31 +01:00
4ee7f2a0d6
add water thresholding 2022-09-28 18:07:26 +01:00
404dc30f08
and again 2022-09-28 17:39:09 +01:00
4cd8fc6ded
segmentation: param name fix 2022-09-28 17:37:42 +01:00
41ba980d69
segmentationP implement dataset parser 2022-09-28 17:19:21 +01:00
d618e6f8d7
pretrain-predict: params.json → metadata.jsonl 2022-09-28 16:35:22 +01:00
e9e6139c7a
typo 2022-09-28 16:28:18 +01:00
3dee3d8908
update cli help 2022-09-28 16:23:47 +01:00
b836f7f70c
again 2022-09-27 19:06:41 +01:00
52dff130dd
slurm pretraian predict: moar logging 2022-09-27 19:05:54 +01:00
2d24174e0a
slurm pretrain predict: add $OUTPUT 2022-09-27 18:58:02 +01:00
7d0e3913ae
fix logging 2022-09-27 18:51:58 +01:00
d765b3b14e
fix crash 2022-09-27 18:43:43 +01:00
2cd59a01a5
slurm-pretrain-plot: add ARGS 2022-09-27 18:41:35 +01:00
f4d1d1d77e
just wh 2022-09-27 18:25:45 +01:00
4c24d69ae6
$d → +d 2022-09-27 18:17:07 +01:00
cdb19b4d9f
fixup 2022-09-27 18:13:21 +01:00
c4d3c16873
add some logging 2022-09-27 18:10:58 +01:00
3772c3227e
fixup 2022-09-27 17:57:21 +01:00
dbfa45a016
write params.json properly 2022-09-27 17:49:54 +01:00
a5455dc22a
fix import 2022-09-27 17:41:24 +01:00
d6ff3fb2ce
pretrain_predict fix write mode 2022-09-27 17:38:12 +01:00
f95fd8f9e4
pretrain-predict: add .tfrecord output function 2022-09-27 16:59:31 +01:00
30b8dd063e
fixup 2022-09-27 15:54:37 +01:00
3cf99587e4
Contraster: add gamma layer to load_model 2022-09-27 15:53:52 +01:00
9e9852d066
UMAP: 100k random
no labels.
2022-09-27 15:52:45 +01:00
58c65bdc86
slurm: allow predictions on gpu 2022-09-23 19:21:57 +01:00
d59de41ebb
embeddings: change title rendering; make even moar widererer
We need to see that parallel coordinates  plot in detail
2022-09-23 18:56:39 +01:00
b4ddb24589
slurm plot: compute → highmem 2022-09-22 18:27:58 +01:00
df12470e78
flip conda and time
hopefully we can capture the exit code this way
2022-09-21 14:40:28 +01:00
5252a81238
vis: don't call add_subplot 2022-09-20 19:06:21 +01:00
32bb55652b
slurm predict: autoqueue UMAP plot 2022-09-16 19:36:57 +01:00
24c5263bf0
slurm predict-plot: fixup 2022-09-16 19:27:26 +01:00
7e9c119b04
slurm: fix job name 2022-09-16 19:20:59 +01:00
1574529704
slurm pretrain-predict: move to compute; make exclusive just in case
also shortent o 3 days
2022-09-16 19:17:42 +01:00
d7f5958af0
slurm: write new job files 2022-09-16 19:00:43 +01:00
a552cc4dad
ai vis: make parallel coordinates wider 2022-09-16 18:51:49 +01:00
a70794e661
umap: no min_dist 2022-09-16 17:09:09 +01:00
5778fc51f7
embeddings: fix title; remove colourmap 2022-09-16 17:08:04 +01:00
4fd852d782
fixup 2022-09-16 16:44:35 +01:00
fcab227f6a
cheese: set label for everything to 1 2022-09-16 16:42:05 +01:00
b31645bd5d
pretrain-plot: fix crash; remove water code
the model doesn't save the water encoder at this time
2022-09-16 16:24:07 +01:00
a5f03390ef
pretrain-plot: handle open w -> r 2022-09-16 16:14:30 +01:00
1103ae5561
ai: tweak progress bar 2022-09-16 16:07:16 +01:00
1e35802d2b
ai: fix embed i/o 2022-09-16 16:02:27 +01:00
ed94da7492
fixup 2022-09-16 15:51:26 +01:00
366db658a8
ds predict: fix filenames in 2022-09-16 15:45:22 +01:00
e333dcba9c
tweak projection head 2022-09-16 15:36:01 +01:00
6defd24000
bugfix: too many values to unpack 2022-09-15 19:56:17 +01:00
e3c8277255
ai: tweak the segmentation model structure 2022-09-15 19:54:50 +01:00
1bc8a5bf13
ai: fix crash 2022-09-15 19:37:06 +01:00
bd64986332
ai: implement batched_iterator to replace .batch()
...apparently .batch() means you get a BatchedDataset or whatever when you iterate it like a tf.function instead of the actual tensor :-/
2022-09-15 19:16:38 +01:00
ccd256c00a
embed rainfall radar, not both 2022-09-15 17:37:04 +01:00
2c74676902
predict → predict_on_batch 2022-09-15 17:31:50 +01:00
f036e79098
fixup 2022-09-15 17:09:26 +01:00
d5f1a26ba3
disable prefetching when predicting a thing 2022-09-15 17:09:09 +01:00
8770638022
ai: call .predict(), not the model itself 2022-09-14 17:41:01 +01:00
a96cefde62
ai: predict oops 2022-09-14 17:37:48 +01:00
fa3165a5b2
dataset: simplify dataset_predict 2022-09-14 17:33:17 +01:00
279e27c898
fixup 2022-09-14 17:16:49 +01:00
fad3313ede
fixup 2022-09-14 17:14:04 +01:00
1e682661db
ai: kwargs in from_checkpoint 2022-09-14 17:11:06 +01:00
6bda24d4da
ai: how did I miss that?!
bugfix ah/c
2022-09-14 16:53:43 +01:00
decdd434d8
ai from_checkpoint: bugfix 2022-09-14 16:49:01 +01:00
c9e00ea485
pretrain_predict: fix import 2022-09-14 16:02:36 +01:00
f568d8d19f
io.open → handle_open
this was we get transparent .gz support
2022-09-14 16:01:22 +01:00
9b25186541
fix --only-gpu 2022-09-14 15:55:21 +01:00
a9c9c70d13
typo 2022-09-14 15:17:59 +01:00
fb8f884487
add umap dependencies 2022-09-14 15:16:45 +01:00
1876a8883c
ai pretrain-predict: fix - → _ in cli parsing 2022-09-14 15:12:07 +01:00
f97b771922
make --help display help 2022-09-14 15:03:07 +01:00
3c1aef5913
update help 2022-09-13 19:36:56 +01:00
206257f9f5
ai pretrain_predict: no need to plot here anymore 2022-09-13 19:35:44 +01:00
7685ec3e8b
implement ability to embed & plot pretrained embeddings 2022-09-13 19:18:59 +01:00
7130c4fdf8
start implementing core image segmentation model 2022-09-07 17:45:38 +01:00
22620a1854
ai: implement saving only the rainfall encoder 2022-09-06 19:48:46 +01:00
4c4358c3e5
whitespace 2022-09-06 16:24:11 +01:00
4202821d98
typo 2022-09-06 15:37:36 +01:00
3e13ad12c8
ai Bugfix LayerContrastiveEncoder: channels → input_channels
for consistency
2022-09-05 23:53:16 +01:00
ead8009425
pretrain: add CLI arg for size of watch prediction width/height 2022-09-05 15:36:40 +01:00
9d39215dd5
dataset: drop incomplete batches 2022-09-05 15:36:10 +01:00
c94f5d042e
ai: slurm fixup again 2022-09-02 19:13:56 +01:00
7917820e59
ai: slurm fixup 2022-09-02 19:11:54 +01:00
cd104190e8
slurm: no need to be exclusive anymore 2022-09-02 19:09:45 +01:00
a9dede7bfe
ai: n=10 slurm 2022-09-02 19:09:07 +01:00
42de502f99
slurm-pretrain: set name 2022-09-02 19:08:16 +01:00
457c2eef0d
ai: fixup 2022-09-02 19:06:54 +01:00
a3f03b6d8d
slurm-pretrain: prepare 2022-09-02 19:05:18 +01:00
1d1533d160
ai: how did things get this confusing 2022-09-02 18:51:46 +01:00
1c5defdcd6
ai: cats 2022-09-02 18:45:23 +01:00
6135bcd0cd
fixup 2022-09-02 18:41:31 +01:00
c33c0a0899
ai: these shapes are so annoying 2022-09-02 18:39:24 +01:00
88acd54a97
ai: off-by-one 2022-09-02 18:13:48 +01:00
23bcd294c4
AI: 0.75 → 0.5? 2022-09-02 18:12:51 +01:00
b0e1aeac35
ai: knew it 2022-09-02 18:10:29 +01:00
ef0f15960d
send correct water shape to 2022-09-02 18:09:36 +01:00
ad156a9a00
ai dataset: centre crop the water data to 75% original size
this should both help the model and reduce memory usage
2022-09-02 18:05:32 +01:00
efe41b96ec
fixup 2022-09-02 17:58:02 +01:00
f8ee0afca1
ai: fix arch_name plumbing 2022-09-02 17:57:07 +01:00
3d44831080
Add NO_PREFETCH env var 2022-09-02 17:55:04 +01:00
3e0ca6a315
ai: fix summary file writing; make water encoder smaller 2022-09-02 17:51:45 +01:00
389216b391
reordering 2022-09-02 17:31:19 +01:00
b9d01ddadc
summary logger → summarywriter 2022-09-02 17:28:00 +01:00
9f7f4af784
dataset: properly resize 2022-09-02 17:09:38 +01:00
c78b6562ef
debug adjustment 2022-09-02 17:00:21 +01:00
c89677abd7
dataset: explicit reshape 2022-09-02 16:57:59 +01:00
c066ea331b
dataset: namespace → dict
Python is so annoying
2022-09-02 16:07:44 +01:00
dbff15d4a9
add bug comment 2022-09-01 19:05:50 +01:00
3e4128c0a8
resize rainfall to be 1/2 size of current 2022-09-01 18:47:07 +01:00
8a86728b54
ai: how did I miss that 2022-09-01 18:07:53 +01:00
b2f1ba29bb
debug a 2022-09-01 18:05:33 +01:00
e2f621e212
even moar debug logging 2022-09-01 17:49:51 +01:00
2663123407
moar logging 2022-09-01 17:40:23 +01:00
c2fcb3b954
ai: channels_first → channels_last 2022-09-01 17:06:18 +01:00
f1d7973f22
ai: add dummy label 2022-09-01 17:01:00 +01:00
17d42fe899
ai: json.dumps 2022-09-01 16:21:52 +01:00
940f7aa1b5
ai: set self.model 2022-09-01 16:20:23 +01:00
f1be5fe2bd
ai: add missing arguments to LossContrastive 2022-09-01 16:14:00 +01:00
ddb375e906
ai: another typo 2022-09-01 16:12:05 +01:00
cb3e1d3a23
ai: fixup 2022-09-01 16:10:50 +01:00
e4c95bc7e3
typo 2022-09-01 16:09:24 +01:00
cfbbe8e8cf
ai: global? really? 2022-09-01 16:06:24 +01:00
4952ead094
ai: try the nonlocal keyword? I'm unsure what's going on here
....clearly I need to read up on scoping in python.
2022-09-01 16:02:37 +01:00
1d9d0fbb73
requirements.txt:a dd tensorflow_addons 2022-09-01 15:56:02 +01:00
8bdded23eb
ai: fix 'nother crash' name ConvNeXt submodels 2022-08-31 18:57:27 +01:00
b2a320134e
ai: typo 2022-08-31 18:54:03 +01:00
e4edc68df5
ai: add missing gamma layer 2022-08-31 18:52:35 +01:00
51cf08a386
ResNetRSV2 → ConvNeXt
ironically this makes the model simpler o/
2022-08-31 18:51:01 +01:00
3d614d105b
channels first 2022-08-31 18:06:59 +01:00
654eefd9ca
properly handle water dimensions; add log files to .gitignore
TODO: add heightmap
2022-08-31 18:03:39 +01:00
5846828f9e
debug logging 2022-08-31 17:48:09 +01:00
12c77e128d
handle feature_dim properly 2022-08-31 17:41:51 +01:00
c52a9f961c
and another 2022-08-31 17:37:28 +01:00
58dbabd561
fix another crash 2022-08-31 17:33:07 +01:00
5fc0725917
slurm: chmod +x 2022-08-31 16:33:07 +01:00
dbf929325a
typo; add pretrain slurm job file 2022-08-31 16:32:17 +01:00
e0162bc70b
requirements.txt: add missing dependencies 2022-08-31 16:25:47 +01:00
f2312c1184
fix crash 2022-08-31 16:25:27 +01:00
15a3519107
ai: the best thing about implementing a model is that you don't have to test it on the same day :P 2022-08-11 18:26:28 +01:00
c0a9cb12d8
ai: start creating initial model implementation.
it's not hooked up to the CLI yet though.
Focus is still on ensuring the dataset is in the right format though
2022-08-10 19:03:25 +01:00
b52c7f89a7
Move dataset parsing function to the right place 2022-08-10 17:24:55 +01:00
222a6146ec
write glue for .jsonl.gz → .tfrecord.gz converter 2022-08-08 15:33:59 +01:00
28a3f578d5
update .gitignore 2022-08-04 16:49:53 +01:00
323d708692
dataset: add todo
just why, Tensorflow?!
tf.data.TextLineDataset looks almost too good to be true..... and it is, as despite supporting decompressing via gzip(!) it doesn't look like we can convince it to parse JSON :-/
2022-07-26 19:53:18 +01:00
b53c77a2cb
index.py: call static function name run 2022-07-26 19:51:28 +01:00
a7ed58fc03
ai: move requirements.txt to the right place 2022-07-26 19:25:11 +01:00
e93a95f1b3
ai dataset: add if main == main 2022-07-26 19:24:40 +01:00
de4c3dab17
typo 2022-07-26 19:14:55 +01:00
18a7d3674b
ai: create (untested) dataset 2022-07-26 19:14:10 +01:00
dac6919fcd
ai: start creating initial scaffolding 2022-07-25 19:01:10 +01:00
8a9cd6c1c0
Lay out some basic scaffolding
I *really* hope this works. This is the 3rd major revision of this
model. I've learnt a ton of stuff between now and my last attempt, so
here's hoping that all goes well :D

The basic idea behind this attempt is *Contrastive Learning*. If we
don't get anything useful with this approach, then we can assume that
it's not really possible / feasible.

Something we need to watch out for is the variance (or rather lack
thereof) in the dataset. We have 1.5M timesteps, but not a whole lot
will be happening in most of those....

We may need to analyse the variance of the water depth data and extract
a subsample that's more balanced.
2022-05-13 19:06:15 +01:00