mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-12-22 22:25:01 +00:00
typo; add pretrain slurm job file
This commit is contained in:
parent
e0162bc70b
commit
dbf929325a
2 changed files with 69 additions and 1 deletions
68
aimodel/slurm-pretrain.job
Normal file
68
aimodel/slurm-pretrain.job
Normal file
|
@ -0,0 +1,68 @@
|
|||
#!/usr/bin/env bash
|
||||
#SBATCH -J TweetAI
|
||||
#SBATCH -N 1
|
||||
#SBATCH -n 4
|
||||
#SBATCH --gres=gpu:1
|
||||
#SBATCH -o %j.%N.%a.out
|
||||
#SBATCH -e %j.%N.%a.err
|
||||
#SBATCH -p gpu05
|
||||
#SBATCH --time=5-00:00:00
|
||||
#SBATCH --exclusive
|
||||
|
||||
module load utilities/multi
|
||||
module load readline/7.0
|
||||
module load gcc/10.2.0
|
||||
module load cuda/11.5.0
|
||||
|
||||
module load python/anaconda/4.6/miniconda/3.7
|
||||
|
||||
|
||||
show_help() {
|
||||
echo -e "Usage:" >&2;
|
||||
echo -e " [INPUT='\$HOME/rainfallwater_records_tfrecord'] [POSTFIX='<string>'] sbatch slurm-pretrain.job" >&2;
|
||||
echo -e "" >&2;
|
||||
echo -e "....where:" >&2;
|
||||
echo -e " INPUT The path to the directory containing the .tfrecord files to use as training data (see the rainfallwrangler for making these)" >&2;
|
||||
echo -e " POSTFIX Optional. A suffix to apply to the run code name." >&2;
|
||||
echo -e "" >&2;
|
||||
echo -e "The code used to identify the run is taken automatically from the filename of the config file." >&2;
|
||||
exit;
|
||||
}
|
||||
|
||||
CONFIG="${CONFIG:-configs/clip.toml}";
|
||||
|
||||
if [[ -z "${CONFIG}" ]]; then
|
||||
echo -e "Error: No CONFIG environment variable specified.\n" >&2;
|
||||
show_help;
|
||||
exit 0;
|
||||
fi
|
||||
|
||||
if [[ ! -d "${INPUT}" ]]; then
|
||||
echo -e "Error: The directory '${INPUT}' containing the input .tfrecord dataset either doesn't exist or isn't a directory.";
|
||||
show_help;
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
|
||||
CODE="$(basename "${CONFIG}")";
|
||||
CODE="${CODE%.*}";
|
||||
|
||||
if [[ -n "${POSTFIX}" ]]; then
|
||||
echo -e ">>> Applying postfix of ${POSTFIX}" >&2;
|
||||
CODE="${CODE}_${POSTFIX}";
|
||||
fi
|
||||
|
||||
echo -e ">>> Input dirpath: ${INPUT}" >&2;
|
||||
echo -e ">>> Code: ${CODE}" >&2;
|
||||
echo -e ">>> Additional args: ${ARGS}";
|
||||
|
||||
dir_output="output/$(date -u --rfc-3339=date)_${CODE}";
|
||||
|
||||
export PATH=$HOME/software/bin:$PATH;
|
||||
|
||||
echo ">>> Installing requirements";
|
||||
conda run -n py38 pip install -r requirements.txt;
|
||||
echo ">>> Training model";
|
||||
#shellcheck disable=SC2086
|
||||
/usr/bin/env time -v conda run -n py38 src/index.py --input "${CONFIG}" --output "${dir_output}" ${ARGS};
|
||||
echo ">>> exited with code $?";
|
|
@ -15,7 +15,7 @@ def parse_args():
|
|||
parser.add_argument("--output", "-o", help="Path to output directory to write output to (will be automatically created if it doesn't exist)", required=True)
|
||||
parser.add_argument("--feature-dim", help="The size of the output feature dimension of the model [default: 200].", type=int)
|
||||
parser.add_argument("--batch-size", help="Sets the batch size [default: 64].", type=int)
|
||||
parser.add_argument("--reads-multiplier", help="Optional. The multiplier for the number of files we should read from at once. Defaults to 1.5, which means read ceil(NUMBER_OF_CORES * 1.5). Set to a higher number of systems with high read latency to avoid starving the GPU of data.")
|
||||
parser.add_argument("--reads-multiplier", help="Optional. The multiplier for the number of files we should read from at once. Defaults to 1.5, which means read ceil(NUMBER_OF_CORES * 1.5) files at once. Set to a higher number of systems with high read latency to avoid starving the GPU of data.")
|
||||
|
||||
return parser
|
||||
|
||||
|
|
Loading…
Reference in a new issue