mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-22 01:12:59 +00:00
segmentationP implement dataset parser
This commit is contained in:
parent
d618e6f8d7
commit
41ba980d69
2 changed files with 106 additions and 2 deletions
104
aimodel/src/lib/dataset/dataset_segmenter.py
Normal file
104
aimodel/src/lib/dataset/dataset_segmenter.py
Normal file
|
@ -0,0 +1,104 @@
|
|||
import os
|
||||
import math
|
||||
import json
|
||||
|
||||
from loguru import logger
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from lib.dataset.read_metadata import read_metadata
|
||||
|
||||
from ..io.readfile import readfile
|
||||
from .shuffle import shuffle
|
||||
|
||||
|
||||
|
||||
# TO PARSE:
|
||||
def parse_item(metadata, shape_water_desired):
|
||||
water_width_source, water_height_source, _water_channels_source = metadata["waterdepth"]
|
||||
water_width_target, water_height_target = shape_water_desired
|
||||
water_offset_x = math.ceil((water_width_source - water_width_target) / 2)
|
||||
water_offset_y = math.ceil((water_height_source - water_height_target) / 2)
|
||||
def parse_item_inner(item):
|
||||
parsed = tf.io.parse_single_example(item, features={
|
||||
"rainfallradar": tf.io.FixedLenFeature([], tf.string),
|
||||
"waterdepth": tf.io.FixedLenFeature([], tf.string)
|
||||
})
|
||||
rainfall = tf.io.parse_tensor(parsed["rainfallradar"], out_type=tf.float32)
|
||||
water = tf.io.parse_tensor(parsed["waterdepth"], out_type=tf.float32)
|
||||
|
||||
rainfall = tf.reshape(rainfall, tf.constant(metadata["rainfallradar"], dtype=tf.int32))
|
||||
water = tf.reshape(water, tf.constant(metadata["waterdepth"], dtype=tf.int32))
|
||||
|
||||
# SHAPES:
|
||||
# rainfall = [ feature_dim ]
|
||||
# water = [ width, height, 1 ]
|
||||
|
||||
water = tf.image.crop_to_bounding_box(water, water_offset_x, water_offset_y, water_width_target, water_height_target)
|
||||
|
||||
print("DEBUG:dataset ITEM rainfall:shape", rainfall.shape, "water:shape", water.shape)
|
||||
|
||||
# TODO: Add any other additional parsing here, since multiple .map() calls are not optimal
|
||||
|
||||
return rainfall, water
|
||||
|
||||
return tf.function(parse_item_inner)
|
||||
|
||||
def make_dataset(filepaths, metadata, shape_watch_desired=[100,100], compression_type="GZIP", parallel_reads_multiplier=1.5, shuffle_buffer_size=128, batch_size=64, prefetch=True, shuffle=True):
|
||||
if "NO_PREFETCH" in os.environ:
|
||||
logger.info("disabling data prefetching.")
|
||||
|
||||
dataset = tf.data.TFRecordDataset(filepaths,
|
||||
compression_type=compression_type,
|
||||
num_parallel_reads=math.ceil(os.cpu_count() * parallel_reads_multiplier)
|
||||
)
|
||||
if shuffle:
|
||||
dataset = dataset.shuffle(shuffle_buffer_size)
|
||||
dataset = dataset.map(parse_item(metadata, shape_water_desired=shape_watch_desired), num_parallel_calls=tf.data.AUTOTUNE)
|
||||
|
||||
if batch_size != None:
|
||||
dataset = dataset.batch(batch_size, drop_remainder=True)
|
||||
if prefetch:
|
||||
dataset = dataset.prefetch(0 if "NO_PREFETCH" in os.environ else tf.data.AUTOTUNE)
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
def get_filepaths(dirpath_input):
|
||||
return shuffle(list(filter(
|
||||
lambda filepath: str(filepath).endswith(".tfrecord.gz"),
|
||||
[ file.path for file in os.scandir(dirpath_input) ] # .path on a DirEntry object yields the absolute filepath
|
||||
)))
|
||||
|
||||
def dataset_segmenter(dirpath_input, batch_size=64, train_percentage=0.8, parallel_reads_multiplier=1.5):
|
||||
filepaths = get_filepaths(dirpath_input)
|
||||
filepaths_count = len(filepaths)
|
||||
dataset_splitpoint = math.floor(filepaths_count * train_percentage)
|
||||
|
||||
filepaths_train = filepaths[:dataset_splitpoint]
|
||||
filepaths_validate = filepaths[dataset_splitpoint:]
|
||||
|
||||
metadata = read_metadata(dirpath_input)
|
||||
|
||||
dataset_train = make_dataset(filepaths_train, metadata, batch_size=batch_size, parallel_reads_multiplier=parallel_reads_multiplier)
|
||||
dataset_validate = make_dataset(filepaths_validate, metadata, batch_size=batch_size, parallel_reads_multiplier=parallel_reads_multiplier)
|
||||
|
||||
return dataset_train, dataset_validate #, filepaths
|
||||
|
||||
def dataset_predict(dirpath_input, parallel_reads_multiplier=1.5, prefetch=True):
|
||||
filepaths = get_filepaths(dirpath_input) if os.path.isdir(dirpath_input) else [ dirpath_input ]
|
||||
|
||||
return make_dataset(
|
||||
filepaths=filepaths,
|
||||
metadata=read_metadata(dirpath_input),
|
||||
parallel_reads_multiplier=parallel_reads_multiplier,
|
||||
batch_size=None,
|
||||
prefetch=prefetch,
|
||||
shuffle=False #even with shuffle=False we're not gonna get them all in the same order since we're reading in parallel
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
ds_train, ds_validate = dataset_segmenter("/mnt/research-data/main/PhD-Rainfall-Radar/aimodel/output/rainfallwater_records_embed_d512e19_tfrecord/")
|
||||
for thing in ds_validate():
|
||||
as_str = str(thing)
|
||||
print(thing[:200])
|
|
@ -6,7 +6,7 @@ from asyncio.log import logger
|
|||
import tensorflow as tf
|
||||
|
||||
from lib.ai.RainfallWaterSegmenter import RainfallWaterSegmenter
|
||||
from lib.dataset.dataset import dataset
|
||||
from lib.dataset.dataset_segmenter import dataset_segmenter
|
||||
from lib.dataset.read_metadata import read_metadata
|
||||
|
||||
def parse_args():
|
||||
|
@ -36,7 +36,7 @@ def run(args):
|
|||
|
||||
sys.stderr.write(f"\n\n>>> This is TensorFlow {tf.__version__}\n\n\n")
|
||||
|
||||
dataset_train, dataset_validate = dataset(
|
||||
dataset_train, dataset_validate = dataset_segmenter(
|
||||
dirpath_input=args.input,
|
||||
batch_size=args.batch_size,
|
||||
)
|
||||
|
|
Loading…
Reference in a new issue