mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-12-22 22:25:01 +00:00
resize rainfall to be 1/2 size of current
This commit is contained in:
parent
8a86728b54
commit
3e4128c0a8
2 changed files with 34 additions and 23 deletions
|
@ -6,40 +6,47 @@ from loguru import logger
|
|||
|
||||
import tensorflow as tf
|
||||
|
||||
from ..io.readfile import readfile
|
||||
from .shuffle import shuffle
|
||||
|
||||
|
||||
# TO PARSE:
|
||||
@tf.function
|
||||
def parse_item(item):
|
||||
parsed = tf.io.parse_single_example(item, features={
|
||||
"rainfallradar": tf.io.FixedLenFeature([], tf.string),
|
||||
"waterdepth": tf.io.FixedLenFeature([], tf.string)
|
||||
})
|
||||
rainfall = tf.io.parse_tensor(parsed["rainfallradar"], out_type=tf.float32)
|
||||
water = tf.io.parse_tensor(parsed["waterdepth"], out_type=tf.float32)
|
||||
|
||||
# [channels, width, height] → [width, height, channels] - ref ConvNeXt does not support data_format=channels_first
|
||||
rainfall = tf.transpose(rainfall, [1, 2, 0])
|
||||
# [width, height] → [width, height, channels]
|
||||
water = tf.expand_dims(water, axis=-1)
|
||||
|
||||
# TODO: The shape of the resulting tensor can't be statically determined, so we need to reshape here
|
||||
print("DEBUG:dataset ITEM rainfall:shape", rainfall.shape, "water:shape", water.shape)
|
||||
# TODO: Any other additional parsing here, since multiple .map() calls are not optimal
|
||||
return ((rainfall, water), tf.ones(1))
|
||||
|
||||
def make_dataset(filenames, compression_type="GZIP", parallel_reads_multiplier=1.5, shuffle_buffer_size=128, batch_size=64):
|
||||
# TO PARSE:
|
||||
def parse_item(metadata):
|
||||
def parse_item_inner(item):
|
||||
parsed = tf.io.parse_single_example(item, features={
|
||||
"rainfallradar": tf.io.FixedLenFeature([], tf.string),
|
||||
"waterdepth": tf.io.FixedLenFeature([], tf.string)
|
||||
})
|
||||
rainfall = tf.io.parse_tensor(parsed["rainfallradar"], out_type=tf.float32)
|
||||
water = tf.io.parse_tensor(parsed["waterdepth"], out_type=tf.float32)
|
||||
|
||||
# [channels, width, height] → [width, height, channels] - ref ConvNeXt does not support data_format=channels_first
|
||||
rainfall = tf.transpose(rainfall, [1, 2, 0])
|
||||
# [width, height] → [width, height, channels]
|
||||
water = tf.expand_dims(water, axis=-1)
|
||||
|
||||
rainfall = tf.image.resize(rainfall, tf.constant(metadata.waterdepth))
|
||||
|
||||
# TODO: The shape of the resulting tensor can't be statically determined, so we need to reshape here
|
||||
print("DEBUG:dataset ITEM rainfall:shape", rainfall.shape, "water:shape", water.shape)
|
||||
# TODO: Any other additional parsing here, since multiple .map() calls are not optimal
|
||||
return ((rainfall, water), tf.ones(1))
|
||||
|
||||
return tf.function(parse_item_inner)
|
||||
|
||||
def make_dataset(filenames, metadata, compression_type="GZIP", parallel_reads_multiplier=1.5, shuffle_buffer_size=128, batch_size=64):
|
||||
return tf.data.TFRecordDataset(filenames,
|
||||
compression_type=compression_type,
|
||||
num_parallel_reads=math.ceil(os.cpu_count() * parallel_reads_multiplier)
|
||||
).shuffle(shuffle_buffer_size) \
|
||||
.map(parse_item, num_parallel_calls=tf.data.AUTOTUNE) \
|
||||
.map(parse_item(metadata), num_parallel_calls=tf.data.AUTOTUNE) \
|
||||
.batch(batch_size) \
|
||||
.prefetch(tf.data.AUTOTUNE)
|
||||
|
||||
|
||||
def dataset(dirpath_input, batch_size=64, train_percentage=0.8, parallel_reads_multiplier=1.5):
|
||||
filepath_meta = os.path.join(dirpath_input, "metadata.json")
|
||||
filepaths = shuffle(list(filter(
|
||||
lambda filepath: str(filepath).endswith(".tfrecord.gz"),
|
||||
[ file.path for file in os.scandir(dirpath_input) ] # .path on a DirEntry object yields the absolute filepath
|
||||
|
@ -50,8 +57,10 @@ def dataset(dirpath_input, batch_size=64, train_percentage=0.8, parallel_reads_m
|
|||
filepaths_train = filepaths[:dataset_splitpoint]
|
||||
filepaths_validate = filepaths[dataset_splitpoint:]
|
||||
|
||||
dataset_train = make_dataset(filepaths_train, batch_size=batch_size, parallel_reads_multiplier=parallel_reads_multiplier)
|
||||
dataset_validate = make_dataset(filepaths_validate, batch_size=batch_size, parallel_reads_multiplier=parallel_reads_multiplier)
|
||||
metadata = json.loads(readfile(filepath_meta))
|
||||
|
||||
dataset_train = make_dataset(filepaths_train, metadata, batch_size=batch_size, parallel_reads_multiplier=parallel_reads_multiplier)
|
||||
dataset_validate = make_dataset(filepaths_validate, metadata, batch_size=batch_size, parallel_reads_multiplier=parallel_reads_multiplier)
|
||||
|
||||
return dataset_train, dataset_validate #, filepaths
|
||||
|
||||
|
|
|
@ -37,6 +37,8 @@ def convert(filepath_in, filepath_out):
|
|||
rainfall = tf.constant(obj["rainfallradar"], dtype=tf.float32)
|
||||
water = tf.constant(obj["waterdepth"], dtype=tf.float32)
|
||||
|
||||
# TODO: cast float32 → divide by max_value → clip 0-1 (or -1 to +1? I don't know)
|
||||
|
||||
###
|
||||
## 3: Print shape definitions (required when parsing)
|
||||
###
|
||||
|
|
Loading…
Reference in a new issue