multimaze/maze.lua

190 lines
6.2 KiB
Lua

local svg = require("../utils/svg_writer")
-------------------------------------
-- Maze generation script
-------------------------------------
-- A test by @Starbeamrainbowlabs
local M = {}
-- Intelligent table printing function: http://coronalabs.com/blog/2014/09/02/tutorial-printing-table-contents/
-- if arg[1] ~= nil then
-- width = tonumber(arg[1])
-- else
-- width = 35
-- end
-- if arg[2] ~= nil then
-- height = tonumber(arg[2])
-- else
-- height = 15
-- end
----------------------------------
-- function to print out the world
----------------------------------
function M.printspace(space, w, h)
for y = 0, h - 1, 1 do
local line = ""
for x = 0, w - 1, 1 do
line = line .. space[y][x]
end
print(line)
end
end
function M.make_svg(space, width, height, settings)
-- Settings: scale, colour, inverted
local result = { svg.start(width * settings.scale, height * settings.scale) }
for y = 0, height - 1, 1 do
for x = 0, width - 1, 1 do
local do_square = false
if settings.inverted then
if space[y][x] == "#" then do_square = true end
else
if space[y][x] == " " then do_square = true end
end
if do_square then
table.insert(result, svg.rect(
x * settings.scale, y * settings.scale,
settings.scale, settings.scale,
settings.colour
))
end
end
end
table.insert(result, svg.finish())
return table.concat(result, "")
end
-- Initialise the world
function M.generate_maze(seed, width, height, path_length, path_width, branching_factor)
local start_time = os.clock()
if not path_length then path_length = 2 end
if not path_width then path_width = 1 end
if not branching_factor then branching_factor = 6 end
math.randomseed(seed) -- seed the random number generator with the system clock
-- width = width - 1
-- height = height - 1
local world = {}
for y = 0, height, 1 do
world[y] = {}
for x = 0, width, 1 do
world[y][x] = "#"
end
end
-- do a random walk to create pathways
local nodes = {} -- the nodes left that we haven't investigated
local curnode = 1 -- the node we are currently operating on
local cx, cy = 1, 1 -- our current position
table.insert(nodes, { x = cx, y = cy })
world[cy][cx] = " "
while #nodes > 0 do
-- io.write("Nodes left: " .. curnode .. "\r")
--print("Nodes left: " .. #nodes)
-- print("Currently at (" .. cx .. ", " .. cy .. "), up: "..(cy-path_length)..", down: "..cy+path_length..", left: "..cx-path_length..", right: "..cx+path_length..", width: "..width..", height: "..height)
local directions = "" -- the different directions we can move
if cy - path_length > 0 and world[cy - path_length][cx] == "#" then
directions = directions .. "u"
-- print("up | cy: "..cy..", target: "..cy-path_length..", value: '"..world[cy - path_length][cx].."', path_length: "..path_length)
end
if cy + path_length < height-path_width+1 and world[cy + path_length][cx] == "#" then
directions = directions .. "d"
-- print("down | cy: "..cy..", target: "..cy+path_length..", value: '"..world[cy + path_length][cx].."', path_length: "..path_length)
end
if cx - path_length > 0 and world[cy][cx - path_length] == "#" then
directions = directions .. "l"
-- print("left | cx: "..cx..", target: "..cx-path_length..", value: '"..world[cy][cx - path_length].."', path_length: "..path_length)
end
if cx + path_length < width-path_width+1 and world[cy][cx + path_length] == "#" then
directions = directions .. "r"
-- print("right | cx: "..cx..", target: "..cx+path_length..", value: '"..world[cy][cx + path_length].."', path_length: "..path_length)
end
-- print("radar output: '" .. directions .. "' (length: " .. #directions .. "), curnode: " .. curnode)
local shift_attention = math.random(0, branching_factor)
if #directions > 0 then
-- we still have somewhere that we can go
--print("This node is not a dead end yet.")
local curdirnum = math.random(1, #directions)
local curdir = string.sub(directions, curdirnum, curdirnum)
if curdir == "u" then
for ix = cx,cx+(path_width-1) do
for iy = cy-path_length,cy do
world[iy][ix] = " "
end
end
-- world[cy - 1][cx] = " "
-- world[cy - 2][cx] = " "
cy = cy - path_length
elseif curdir == "d" then
for ix = cx,cx+path_width-1 do
for iy = cy,cy+path_length+(path_width-1) do
world[iy][ix] = " "
end
end
-- world[cy + 1][cx] = " "
-- world[cy + 2][cx] = " "
cy = cy + path_length
elseif curdir == "l" then
for iy = cy,cy+path_width-1 do
for ix = cx-path_length,cx do
world[iy][ix] = " "
end
end
-- world[cy][cx - 1] = " "
-- world[cy][cx - 2] = " "
cx = cx - path_length
elseif curdir == "r" then
for iy = cy,cy+(path_width-1) do
for ix = cx,cx+path_length+(path_width-1) do
world[iy][ix] = " "
end
end
-- world[cy][cx + 1] = " "
-- world[cy][cx + 2] = " "
cx = cx + path_length
end
-- print("Now at ("..cx..", "..cy..")")
-- If the number of directions we could travel in was 1, then we've just travelled in the last remaining direction possible
-- THIS ISN'T TRUE, because we're analysing the old position and then inserting the new one - so we have to insert regardless
table.insert(nodes, { x = cx, y = cy })
else
--print("The node at " .. curnode .. " is a dead end.")
table.remove(nodes, curnode)
end
if #directions == 0 or shift_attention <= 1 then
if #nodes > 0 then
--print("performing teleport.");
curnode = math.random(1, #nodes)
cx = nodes[curnode]["x"]
cy = nodes[curnode]["y"]
end
end
-- M.printspace(world, width, height)
-- io.read("*l")
end
end_time = os.clock()
return world, (end_time - start_time) * 1000
end
-- local world, time = generate_maze(os.time(), width, height)
-- printspace(world, width, height)
-- print("Generation completed in " .. time .. "s.")
return M