Start working on integrating LMIC into the main program, but there are lots of bugs.

This commit is contained in:
Starbeamrainbowlabs 2019-06-24 13:52:33 +01:00
parent 31a372e641
commit cda73e37ce
9 changed files with 527 additions and 34 deletions

View file

@ -1,5 +1,6 @@
/*******************************************************************************
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
* Copyright (c) 2018 Terry Moore, MCCI
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
@ -9,18 +10,30 @@
*
* This example sends a valid LoRaWAN packet with payload "Hello,
* world!", using frequency and encryption settings matching those of
* the (early prototype version of) The Things Network.
* the The Things Network.
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in g1,
* 0.1% in g2).
* This uses ABP (Activation-by-personalisation), where a DevAddr and
* Session keys are preconfigured (unlike OTAA, where a DevEUI and
* application key is configured, while the DevAddr and session keys are
* assigned/generated in the over-the-air-activation procedure).
*
* Change DEVADDR to a unique address!
* See http://thethingsnetwork.org/wiki/AddressSpace
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
* violated by this sketch when left running for longer)!
*
* Do not forget to define the radio type correctly in config.h.
* To use this sketch, first register your application and device with
* the things network, to set or generate a DevAddr, NwkSKey and
* AppSKey. Each device should have their own unique values for these
* fields.
*
* Do not forget to define the radio type correctly in
* arduino-lmic/project_config/lmic_project_config.h or from your BOARDS.txt.
*
*******************************************************************************/
// References:
// [feather] adafruit-feather-m0-radio-with-lora-module.pdf
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
@ -29,7 +42,8 @@
// These callbacks are only used in over-the-air activation, so they are
// left empty here (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
// DISABLE_JOIN is set in arduino-lmic/project_config/lmic_project_config.h,
// otherwise the linker will complain).
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
@ -71,23 +85,28 @@ void onEvent (ev_t ev) {
case EV_JOINED:
Serial.println(F("EV_JOINED"));
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_RFU1:
|| Serial.println(F("EV_RFU1"));
|| break;
*/
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if(LMIC.dataLen) {
// data received in rx slot after tx
Serial.print(F("Data Received: "));
Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);
Serial.println();
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F("Received ack"));
if (LMIC.dataLen) {
Serial.println(F("Received "));
Serial.println(LMIC.dataLen);
Serial.println(F(" bytes of payload"));
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
@ -108,8 +127,20 @@ void onEvent (ev_t ev) {
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_SCAN_FOUND:
|| Serial.println(F("EV_SCAN_FOUND"));
|| break;
*/
case EV_TXSTART:
Serial.println(F("EV_TXSTART"));
break;
default:
Serial.print(F("Unknown event: "));
Serial.println((unsigned) ev);
break;
}
}
@ -127,15 +158,17 @@ void do_send(osjob_t* j){
}
void setup() {
// pinMode(13, OUTPUT);
while (!Serial); // wait for Serial to be initialized
Serial.begin(115200);
delay(100); // per sample code on RF_95 test
Serial.println(F("Starting"));
#define PIN_CS 10
#define PIN_CS_2 3
pinMode(PIN_CS, OUTPUT);
pinMode(PIN_CS_2, OUTPUT);
digitalWrite(PIN_CS, LOW); // We want to talk to the RFM 95
digitalWrite(PIN_CS_2, HIGH);
// Activate the right SPI device
pinMode(10, OUTPUT);
pinMode(3, OUTPUT);
digitalWrite(10, LOW);
digitalWrite(3, HIGH);
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
@ -159,12 +192,13 @@ void setup() {
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
LMIC_setSession (0x13, DEVADDR, nwkskey, appskey);
#else
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x13, DEVADDR, NWKSKEY, APPSKEY);
#endif
#if defined(CFG_eu868)
// Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly
@ -186,11 +220,21 @@ void setup() {
// devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this
// frequency is not configured here.
#elif defined(CFG_us915)
// NA-US channels 0-71 are configured automatically
// but only one group of 8 should (a subband) should be active
// TTN recommends the second sub band, 1 in a zero based count.
// https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json
LMIC_selectSubBand(1);
#endif
// Disable link check validation
LMIC_setLinkCheckMode(0);
// Set data rate and transmit power (note: txpow seems to be ignored by the library)
// TTN uses SF9 for its RX2 window.
LMIC.dn2Dr = DR_SF9;
// Set data rate and transmit power for uplink
LMIC_setDrTxpow(DR_SF7,14);
// Start job
@ -198,5 +242,15 @@ void setup() {
}
void loop() {
unsigned long now;
now = millis();
if ((now & 512) != 0) {
digitalWrite(13, HIGH);
}
else {
digitalWrite(13, LOW);
}
os_runloop_once();
}

View file

@ -0,0 +1,159 @@
/*******************************************************************************
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example sends a valid LoRaWAN packet with payload "Hello,
* world!", using frequency and encryption settings matching those of
* the The Things Network.
*
* This uses OTAA (Over-the-air activation), where where a DevEUI and
* application key is configured, which are used in an over-the-air
* activation procedure where a DevAddr and session keys are
* assigned/generated for use with all further communication.
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
* violated by this sketch when left running for longer)!
* To use this sketch, first register your application and device with
* the things network, to set or generate an AppEUI, DevEUI and AppKey.
* Multiple devices can use the same AppEUI, but each device has its own
* DevEUI and AppKey.
*
* Do not forget to define the radio type correctly in config.h.
*
*******************************************************************************/
#define DISABLE_PING
#define DISABLE_BEACONS
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include "config.custom.h"
static uint8_t mydata[] = "Hello, world!";
static osjob_t sendjob;
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 60;
void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
// Disable link check validation (automatically enabled
// during join, but not supported by TTN at this time).
LMIC_setLinkCheckMode(0);
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F("Received ack"));
if (LMIC.dataLen) {
Serial.println(F("Received "));
Serial.println(LMIC.dataLen);
Serial.println(F(" bytes of payload"));
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}
void do_send(osjob_t* j){
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
Serial.println(F("Packet queued"));
}
// Next TX is scheduled after TX_COMPLETE event.
}
void setup() {
Serial.begin(115200);
Serial.println(F("Starting"));
// Activate the right SPI device
pinMode(10, OUTPUT);
pinMode(3, OUTPUT);
digitalWrite(10, LOW);
digitalWrite(3, HIGH);
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
LMIC_setClockError(5 * MAX_CLOCK_ERROR / 100);
// Start job (sending automatically starts OTAA too)
do_send(&sendjob);
}
void loop() {
os_runloop_once();
}

View file

@ -0,0 +1,26 @@
// This EUI must be in little-endian format, so least-significant-byte
// first. When copying an EUI from ttnctl output, this means to reverse
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,
// 0x70.
static const u1_t PROGMEM APPEUI[8]={ ..... };
void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
// This should also be in little endian format, see above.
static const u1_t PROGMEM DEVEUI[8]={ ...... };
void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
// This key should be in big endian format (or, since it is not really a
// number but a block of memory, endianness does not really apply). In
// practice, a key taken from ttnctl can be copied as-is.
// The key shown here is the semtech default key.
static const u1_t PROGMEM APPKEY[16] = { ...... };
void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}
const lmic_pinmap lmic_pins = {
.nss = 10,
.rxtx = LMIC_UNUSED_PIN,
.rst = 9,
.dio = {2, 6, 7},
};

View file

@ -7,6 +7,7 @@
// BAD PRACTICE: For some extremely strange reason, the Arduino IDE doesn't pick up random.cpp like it does our other source files - so we've got to explicitly include it here. If we had control over the build process (which we don't), we've use a Makefile here that handled this better.
#include "random.cpp"
#include "gps.h"
#include "peripheral.h"
void setup() {
@ -15,6 +16,9 @@ void setup() {
random_begin();
peripheral_register(PIN_SPI_CS_RFM95);
peripheral_register(PIN_SPI_CS_SD);
gps_begin();
TinyGPSPlus gps_data = gps_location();
@ -27,7 +31,10 @@ void setup() {
Serial.print("[main] id: ");
Serial.println(id);
store_init();
// Activate microSD card breakout board on the SPI bus
peripheral_unsilence(PIN_SPI_CS_SD);
store_init();
store_reading(id, gps_data.location);
char debug_message[64];
int chars = snprintf(debug_message, 64, "%d-%d-%d %d:%d:%d | %f %f",
@ -43,6 +50,13 @@ void setup() {
store_debug(debug_message, chars);
store_close();
// ------------------------------------------------------------------------
// Activate the RFM95
peripheral_unsilence(PIN_SPI_CS_RFM95);
power_off(); // Doesn't return
}

20
iot/main/peripheral.cpp Normal file
View file

@ -0,0 +1,20 @@
#include <Arduino.h>
void peripheral_register(int pin_number) {
pinMode(OUTPUT, pin_number);
// Disable the device by default to avoid issues
digitalWrite(pin_number, HIGH);
}
void peripheral_unsilence(int pin_number) {
digitalWrite(pin_number, LOW);
}
void peripheral_silence(int pin_number) {
digitalWrite(pin_number, HIGH);
}
void peripheral_switch(int pin_number_old, int pin_number_new) {
digitalWrite(pin_number_old, HIGH);
digitalWrite(pin_number_new, LOW);
}

24
iot/main/peripheral.h Normal file
View file

@ -0,0 +1,24 @@
#pragma once
/**
* Register a new SPI peripheral.
* @param pin_number The pin number of the device's chip select pin.
*/
void peripheral_register(int pin_number);
/**
* Allows the device with the given chip select pin to talk on the SPI bus.
* @param pin_number The pin number of the chip select pin of the device to allow to talk.
*/
void peripheral_unsilence(int pin_number);
/**
* Stops the device with the given chip select pin from talking on the SPI bus.
* @param pin_number The chip-select pin number of the device to stop.
*/
void peripheral_silence(int pin_number);
/**
* Switches the active device from one to another on the SPI bus.
* @param pin_number_old The chip-select pin number of the old device to switch out from.
* @param pin_number_new The chip-select pin number of the new device to switch in to.
*/
void peripheral_switch(int pin_number_old, int pin_number_new);

160
iot/main/radio.cpp Normal file
View file

@ -0,0 +1,160 @@
#pragma once
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
// Global static variable that's used to detect when LMIC has finished doing it's thing
static bool is_sending_complete = false;
static osjob_t sendjob;
void radio_init() {
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// Set static session parameters. Instead of dynamically establishing a session
// by joining the network, precomputed session parameters are be provided.
#ifdef PROGMEM
// On AVR, these values are stored in flash and only copied to RAM
// once. Copy them to a temporary buffer here, LMIC_setSession will
// copy them into a buffer of its own again.
uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
#else
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
#endif
// Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly
// works, so it is good for debugging, but can overload those
// frequencies, so be sure to configure the full frequency range of
// your network here (unless your network autoconfigures them).
// Setting up channels should happen after LMIC_setSession, as that
// configures the minimal channel set.
LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band
LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band
// TTN defines an additional channel at 869.525Mhz using SF9 for class B
// devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this
// frequency is not configured here.
// Disable link check validation
LMIC_setLinkCheckMode(0);
// Set data rate and transmit power (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14);
}
/**
* Sends a specified message via LoRaWAN.
* @param data The message to send.
* @param length The length of the given message.
*/
bool radio_send(uint8_t* data, int length) {
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND: There's already a job running, not sending"));
return false;
}
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, data, length, 0);
Serial.println(F("Packet queued"));
// Run the LMIC loop, but only until it's finished sending the packet
while (!is_sending_complete) {
os_runloop_once();
}
// Reset it for next time (just in case)
is_sending_complete = false;
return true;
}
// These callbacks are only used in over-the-air activation, so they are
// left empty here (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if(LMIC.dataLen) {
// data received in rx slot after tx
Serial.print(F("Data Received: "));
Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);
Serial.println();
}
// We're done!
is_sending_complete = true;
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}

13
iot/main/radio.h Normal file
View file

@ -0,0 +1,13 @@
#pragma once
/**
* Initialises the RFM95 LoRa radio.
*/
void radio_init();
/**
* Sends a specified message via LoRaWAN.
* @param data The message to send.
* @param length The length of the given message.
*/
void radio_send(byte* data, int length);

View file

@ -1,5 +1,7 @@
#pragma once
#include <arduino-lmic/src/hal/hal.h>
//////////////////////////////////
////////////// Main //////////////
//////////////////////////////////
@ -7,23 +9,44 @@
// The speed at which we should talk over our main hardware serial connection.
#define BAUD_PC 115200
// Multiple devices can use the same SPI data pin AFAIKT, but some libraries *cough* SD *cough* are too stupid to figure out which pin it is on their own.
// Multiple devices can use the same SPI data pin AFAIKT, but some libraries
// *cough* SD *cough* are too stupid to figure out which pin it is on their own.
#define PIN_SPI_DATA 9
// The 'done' pin to pulse to signal to the TPL5111
#define PIN_TPL_DONE 8
/////////////
/// RFM95 ///
/////////////
// Pin mapping
const lmic_pinmap lmic_pins = {
.nss = 10,
.rxtx = LMIC_UNUSED_PIN,
.rst = 9,
.dio = {2, 6, 7},
};
// The SPI chip-select pin for the RFM 95
#define PIN_SPI_CS_RFM95 10
/////////////////////////////////
////////////// GPS //////////////
/////////////////////////////////
// The *TX* gin of the GPS device.
// This is swapped because we receive the GPS device's message on our side on the RX pin, and the GPS device transmits messages on the TX.
// This is swapped because we receive the GPS device's message on our side on
// the RX pin, and the GPS device transmits messages on the TX.
#define PIN_GPS_RX 5
// The *RX* pin on the GPS device.
// This is swapped because where the GPs device is receiving, we aresending and vice versa.
// This is swapped because where the GPs device is receiving, we aresending and
// vice versa.
// The TX / RX here are according to *our* side, not the GPS device's side.
#define PIN_GPS_TX 4
// The speed at which we should talk to the GPS device. Some GPS devices require a certain speed in order to use certain commands, so it's important that you check the datasheets for the device you're using.
// The speed at which we should talk to the GPS device. Some GPS devices
// require a certain speed in order to use certain commands, so it's important
// that you check the datasheets for the device you're using.
// 9600 is the correct speed for a NEO-6M.
#define BAUD_GPS 9600
@ -32,7 +55,7 @@
//////////////////////////////////
// The chip select pin that activates the connection to the microSD card over SPI.
#define PIN_SD_SPI_CHIP_SELECT 3
#define PIN_SPI_CS_SD 3
// The filename on the microSD card to store data in.
#define SD_FILENAME "data.tsv"