Backup mirror of https://github.com/sbrl/research-rainfallradar A model to predict water depth data from rainfall radar information. https://github.com/sbrl/research-rainfallradar
Find a file
Starbeamrainbowlabs 8a9cd6c1c0
Lay out some basic scaffolding
I *really* hope this works. This is the 3rd major revision of this
model. I've learnt a ton of stuff between now and my last attempt, so
here's hoping that all goes well :D

The basic idea behind this attempt is *Contrastive Learning*. If we
don't get anything useful with this approach, then we can assume that
it's not really possible / feasible.

Something we need to watch out for is the variance (or rather lack
thereof) in the dataset. We have 1.5M timesteps, but not a whole lot
will be happening in most of those....

We may need to analyse the variance of the water depth data and extract
a subsample that's more balanced.
2022-05-13 19:06:15 +01:00
aimodel/src Lay out some basic scaffolding 2022-05-13 19:06:15 +01:00
rainfallwrangler Lay out some basic scaffolding 2022-05-13 19:06:15 +01:00
.gitignore Lay out some basic scaffolding 2022-05-13 19:06:15 +01:00
README.md Lay out some basic scaffolding 2022-05-13 19:06:15 +01:00

Rainfall Radar

A model to predict water depth data from rainfall radar information.

This is the 3rd major version of this model.

rainfallwrangler

rainfallwrangler is a Node.js application to wrangle the dataset into something more appropriate for training an AI efficiently. The rainfall radar and water depth data are considered temporally to be regular time steps. Here's a diagram explaining the terminology:

NOW
│                       │         │Water depth
│▼ Rainfall Radar Data ▼│[Offset] │▼
├─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┼─┬─┬─┬─┬─┼─┐
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┼─┴─┴─┴─┴─┴─┘
                        │
◄────────── Timesteps ─────────────►