mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-21 17:03:00 +00:00
dlr: add sensitivity (aka recall) and specificity metrics
This commit is contained in:
parent
483ecf11c8
commit
b435cc54dd
3 changed files with 42 additions and 6 deletions
|
@ -19,6 +19,8 @@ import tensorflow as tf
|
|||
from lib.dataset.dataset_mono import dataset_mono
|
||||
from lib.ai.components.LossCrossEntropyDice import LossCrossEntropyDice
|
||||
from lib.ai.components.MetricDice import MetricDice
|
||||
from lia.ai.components.MetricSensitivity import MetricSensitivity
|
||||
from lib.ai.components.MetricSpecificity import MetricSpecificity
|
||||
|
||||
time_start = datetime.now()
|
||||
logger.info(f"Starting at {str(datetime.now().isoformat())}")
|
||||
|
@ -160,7 +162,9 @@ else:
|
|||
model = tf.keras.models.load_model(PATH_CHECKPOINT, custom_objects={
|
||||
# Tell Tensorflow about our custom layers so that it can deserialise models that use them
|
||||
"LossCrossEntropyDice": LossCrossEntropyDice,
|
||||
"MetricDice": MetricDice
|
||||
"MetricDice": MetricDice,
|
||||
"MetricSensitivity": MetricSensitivity,
|
||||
"MetricSpecificity": MetricSpecificity
|
||||
})
|
||||
|
||||
|
||||
|
@ -186,7 +190,9 @@ if PATH_CHECKPOINT is None:
|
|||
metrics=[
|
||||
"accuracy",
|
||||
MetricDice(),
|
||||
tf.keras.metrics.MeanIoU(num_classes=2)
|
||||
tf.keras.metrics.MeanIoU(num_classes=2),
|
||||
MetricSensitivity(), # How many true positives were accurately predicted
|
||||
MetricSpecificity() # How many true negatives were accurately predicted?
|
||||
# TODO: Add IoU, F1, Precision, Recall, here.
|
||||
],
|
||||
)
|
||||
|
|
31
aimodel/src/lib/ai/components/MetricSensitivity.py
Normal file
31
aimodel/src/lib/ai/components/MetricSensitivity.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
|
||||
class MetricSensitivity(tf.keras.metrics.Metric):
|
||||
"""An implementation of the sensitivity.
|
||||
Also known as Recall. In other words, how many of the true positives were accurately predicted.
|
||||
@source
|
||||
Args:
|
||||
smooth (float): The batch size (currently unused).
|
||||
"""
|
||||
|
||||
def __init__(self, name="sensitivity", **kwargs):
|
||||
super(MetricSensitivity, self).__init__(name=name)
|
||||
|
||||
self.recall = tf.keras.metrics.Recall(**kwargs)
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
ground_truth = tf.cast(y_true, dtype=tf.float32)
|
||||
prediction = tf.cast(y_pred, dtype=tf.float32)
|
||||
|
||||
return self.recall(y_true, y_pred)
|
||||
|
||||
def get_config(self):
|
||||
config = super(MetricSensitivity, self).get_config()
|
||||
config.update({
|
||||
|
||||
})
|
||||
return config
|
|
@ -21,7 +21,8 @@ def specificity(y_pred, y_true):
|
|||
|
||||
|
||||
class MetricSpecificity(tf.keras.metrics.Metric):
|
||||
"""An implementation of the sensitivity.
|
||||
"""An implementation of the specificity.
|
||||
In other words, a measure of how many of the true negatives were accurately predicted
|
||||
@source
|
||||
Args:
|
||||
smooth (float): The batch size (currently unused).
|
||||
|
@ -29,8 +30,6 @@ class MetricSpecificity(tf.keras.metrics.Metric):
|
|||
|
||||
def __init__(self, name="specificity", **kwargs):
|
||||
super(MetricSpecificity, self).__init__(name=name, **kwargs)
|
||||
|
||||
self.param_smooth = smooth
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
ground_truth = tf.cast(y_true, dtype=tf.float32)
|
||||
|
@ -41,6 +40,6 @@ class MetricSpecificity(tf.keras.metrics.Metric):
|
|||
def get_config(self):
|
||||
config = super(MetricSpecificity, self).get_config()
|
||||
config.update({
|
||||
"smooth": self.param_smooth,
|
||||
|
||||
})
|
||||
return config
|
||||
|
|
Loading…
Reference in a new issue