mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-21 17:03:00 +00:00
add specificity metric
This commit is contained in:
parent
d464c9f57d
commit
483ecf11c8
1 changed files with 46 additions and 0 deletions
46
aimodel/src/lib/ai/components/MetricSpecificity.py
Normal file
46
aimodel/src/lib/ai/components/MetricSpecificity.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def specificity(y_pred, y_true):
|
||||
"""
|
||||
@source https://datascience.stackexchange.com/a/40746/86851
|
||||
param:
|
||||
y_pred - Predicted labels
|
||||
y_true - True labels
|
||||
Returns:
|
||||
Specificity score
|
||||
"""
|
||||
neg_y_true = 1 - y_true
|
||||
neg_y_pred = 1 - y_pred
|
||||
fp = K.sum(neg_y_true * y_pred)
|
||||
tn = K.sum(neg_y_true * neg_y_pred)
|
||||
specificity = tn / (tn + fp + K.epsilon())
|
||||
return specificity
|
||||
|
||||
|
||||
class MetricSpecificity(tf.keras.metrics.Metric):
|
||||
"""An implementation of the sensitivity.
|
||||
@source
|
||||
Args:
|
||||
smooth (float): The batch size (currently unused).
|
||||
"""
|
||||
|
||||
def __init__(self, name="specificity", **kwargs):
|
||||
super(MetricSpecificity, self).__init__(name=name, **kwargs)
|
||||
|
||||
self.param_smooth = smooth
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
ground_truth = tf.cast(y_true, dtype=tf.float32)
|
||||
prediction = tf.cast(y_pred, dtype=tf.float32)
|
||||
|
||||
return specificity(ground_truth, prediction)
|
||||
|
||||
def get_config(self):
|
||||
config = super(MetricSpecificity, self).get_config()
|
||||
config.update({
|
||||
"smooth": self.param_smooth,
|
||||
})
|
||||
return config
|
Loading…
Reference in a new issue