mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-25 02:32:59 +00:00
rainfallwrangler json2tfrecord.py: normalise data
This commit is contained in:
parent
3e4128c0a8
commit
9edda1f397
1 changed files with 6 additions and 1 deletions
|
@ -11,6 +11,10 @@ if not os.environ.get("NO_SILENCE"):
|
|||
silence_tensorflow()
|
||||
import tensorflow as tf
|
||||
|
||||
# The maximum value allowed for the rainfall radar data. Used to normalise the data when converting to .tfrecord files
|
||||
# TODO: Enter the optimal value for this.
|
||||
RAINFALL_MAX_NUMBER = 100
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="Convert a generated .jsonl.gz file to a .tfrecord.gz file")
|
||||
parser.add_argument("--input", "-i", help="Path to the input file to convert.", required=True)
|
||||
|
@ -37,7 +41,8 @@ def convert(filepath_in, filepath_out):
|
|||
rainfall = tf.constant(obj["rainfallradar"], dtype=tf.float32)
|
||||
water = tf.constant(obj["waterdepth"], dtype=tf.float32)
|
||||
|
||||
# TODO: cast float32 → divide by max_value → clip 0-1 (or -1 to +1? I don't know)
|
||||
# Normalise the rainfall radar data (the water depth data is already normalised as it's just 0 or 1)
|
||||
rainfall = tf.clip_by_value(rainfall / RAINFALL_MAX_NUMBER, 0, 1)
|
||||
|
||||
###
|
||||
## 3: Print shape definitions (required when parsing)
|
||||
|
|
Loading…
Reference in a new issue