mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-12-22 22:25:01 +00:00
dlr: add dice loss as metric
more metrics to go tho
This commit is contained in:
parent
f70083bea4
commit
d464c9f57d
2 changed files with 54 additions and 2 deletions
|
@ -18,6 +18,7 @@ import tensorflow as tf
|
|||
|
||||
from lib.dataset.dataset_mono import dataset_mono
|
||||
from lib.ai.components.LossCrossEntropyDice import LossCrossEntropyDice
|
||||
from lib.ai.components.MetricDice import MetricDice
|
||||
|
||||
time_start = datetime.now()
|
||||
logger.info(f"Starting at {str(datetime.now().isoformat())}")
|
||||
|
@ -158,7 +159,8 @@ if PATH_CHECKPOINT is None:
|
|||
else:
|
||||
model = tf.keras.models.load_model(PATH_CHECKPOINT, custom_objects={
|
||||
# Tell Tensorflow about our custom layers so that it can deserialise models that use them
|
||||
"LossCrossEntropyDice": LossCrossEntropyDice
|
||||
"LossCrossEntropyDice": LossCrossEntropyDice,
|
||||
"MetricDice": MetricDice
|
||||
})
|
||||
|
||||
|
||||
|
@ -181,7 +183,12 @@ if PATH_CHECKPOINT is None:
|
|||
model.compile(
|
||||
optimizer=tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE),
|
||||
loss=loss_fn,
|
||||
metrics=["accuracy"],
|
||||
metrics=[
|
||||
"accuracy",
|
||||
MetricDice(),
|
||||
tf.keras.metrics.MeanIoU(num_classes=2)
|
||||
# TODO: Add IoU, F1, Precision, Recall, here.
|
||||
],
|
||||
)
|
||||
logger.info(">>> Beginning training")
|
||||
history = model.fit(dataset_train,
|
||||
|
|
45
aimodel/src/lib/ai/components/MetricDice.py
Normal file
45
aimodel/src/lib/ai/components/MetricDice.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def dice_coefficient(y_true, y_pred):
|
||||
"""Compute the dice coefficient.
|
||||
A measure of how similar 2 things are [images], or how much they overlap [image segmentation]
|
||||
@source https://lars76.github.io/2018/09/27/loss-functions-for-segmentation.html#9
|
||||
Args:
|
||||
y_true (tf.Tensor): The ground truth label.
|
||||
y_pred (tf.Tensor): The output predicted by the model.
|
||||
|
||||
Returns:
|
||||
tf.Tensor: The computed Dice coefficient.
|
||||
"""
|
||||
y_pred = tf.math.sigmoid(y_pred)
|
||||
numerator = 2 * tf.reduce_sum(y_true * y_pred)
|
||||
denominator = tf.reduce_sum(y_true + y_pred)
|
||||
|
||||
return numerator / denominator
|
||||
|
||||
class MetricDice(tf.keras.metrics.Metric):
|
||||
"""An implementation of the dice loss function.
|
||||
@source
|
||||
Args:
|
||||
smooth (float): The batch size (currently unused).
|
||||
"""
|
||||
def __init__(self, name="dice_coefficient", smooth=100, **kwargs):
|
||||
super(MetricDice, self).__init__(name=name, **kwargs)
|
||||
|
||||
self.param_smooth = smooth
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
ground_truth = tf.cast(y_true, dtype=tf.float32)
|
||||
prediction = tf.cast(y_pred, dtype=tf.float32)
|
||||
|
||||
return dice_coef(ground_truth, prediction, smooth=self.param_smooth)
|
||||
|
||||
def get_config(self):
|
||||
config = super(MetricDice, self).get_config()
|
||||
config.update({
|
||||
"smooth": self.param_smooth,
|
||||
})
|
||||
return config
|
Loading…
Reference in a new issue