mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-22 01:12:59 +00:00
dlr: HACK: argmax to convert [64,128,128, 2] → [64,128,128]
This commit is contained in:
parent
94a32e7144
commit
3d051a8874
2 changed files with 11 additions and 26 deletions
|
@ -18,7 +18,7 @@ import tensorflow as tf
|
|||
|
||||
from lib.dataset.dataset_mono import dataset_mono
|
||||
from lib.ai.components.LossCrossEntropyDice import LossCrossEntropyDice
|
||||
from lib.ai.components.MetricDice import dice_coefficient
|
||||
from lib.ai.components.MetricDice import metric_dice_coefficient
|
||||
from lib.ai.components.MetricSensitivity import sensitivity
|
||||
from lib.ai.components.MetricSpecificity import specificity
|
||||
|
||||
|
@ -189,7 +189,7 @@ if PATH_CHECKPOINT is None:
|
|||
loss=loss_fn,
|
||||
metrics=[
|
||||
"accuracy",
|
||||
dice_coefficient,
|
||||
metric_dice_coefficient,
|
||||
tf.keras.metrics.MeanIoU(num_classes=2),
|
||||
sensitivity, # How many true positives were accurately predicted
|
||||
specificity # How many true negatives were accurately predicted?
|
||||
|
|
|
@ -14,32 +14,17 @@ def dice_coefficient(y_true, y_pred):
|
|||
Returns:
|
||||
tf.Tensor: The computed Dice coefficient.
|
||||
"""
|
||||
|
||||
y_true = tf.cast(y_true, dtype=tf.float32)
|
||||
y_pred = tf.cast(y_pred, dtype=tf.float32)
|
||||
|
||||
y_pred = tf.math.sigmoid(y_pred)
|
||||
numerator = 2 * tf.reduce_sum(y_true * y_pred)
|
||||
denominator = tf.reduce_sum(y_true + y_pred)
|
||||
|
||||
|
||||
return numerator / denominator
|
||||
|
||||
class MetricDice(tf.keras.metrics.Metric):
|
||||
"""An implementation of the dice loss function.
|
||||
@source
|
||||
Args:
|
||||
smooth (float): The batch size (currently unused).
|
||||
"""
|
||||
def __init__(self, name="dice_coefficient", smooth=100, **kwargs):
|
||||
super(MetricDice, self).__init__(name=name, **kwargs)
|
||||
|
||||
self.param_smooth = smooth
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
ground_truth = tf.cast(y_true, dtype=tf.float32)
|
||||
prediction = tf.cast(y_pred, dtype=tf.float32)
|
||||
|
||||
return dice_coef(ground_truth, prediction, smooth=self.param_smooth)
|
||||
|
||||
def get_config(self):
|
||||
config = super(MetricDice, self).get_config()
|
||||
config.update({
|
||||
"smooth": self.param_smooth,
|
||||
})
|
||||
return config
|
||||
|
||||
def metric_dice_coefficient(y_true, y_pred):
|
||||
y_pred = tf.math.argmax(y_pred)
|
||||
return dice_coefficient(y_true, y_pred)
|
Loading…
Reference in a new issue