mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-21 17:03:00 +00:00
dlr: fix metrics
This commit is contained in:
parent
c7f96ab6ab
commit
94a32e7144
3 changed files with 19 additions and 33 deletions
|
@ -18,9 +18,9 @@ import tensorflow as tf
|
|||
|
||||
from lib.dataset.dataset_mono import dataset_mono
|
||||
from lib.ai.components.LossCrossEntropyDice import LossCrossEntropyDice
|
||||
from lib.ai.components.MetricDice import MetricDice
|
||||
from lib.ai.components.MetricSensitivity import MetricSensitivity
|
||||
from lib.ai.components.MetricSpecificity import MetricSpecificity
|
||||
from lib.ai.components.MetricDice import dice_coefficient
|
||||
from lib.ai.components.MetricSensitivity import sensitivity
|
||||
from lib.ai.components.MetricSpecificity import specificity
|
||||
|
||||
time_start = datetime.now()
|
||||
logger.info(f"Starting at {str(datetime.now().isoformat())}")
|
||||
|
@ -189,10 +189,10 @@ if PATH_CHECKPOINT is None:
|
|||
loss=loss_fn,
|
||||
metrics=[
|
||||
"accuracy",
|
||||
MetricDice(),
|
||||
dice_coefficient,
|
||||
tf.keras.metrics.MeanIoU(num_classes=2),
|
||||
MetricSensitivity(), # How many true positives were accurately predicted
|
||||
MetricSpecificity() # How many true negatives were accurately predicted?
|
||||
sensitivity, # How many true positives were accurately predicted
|
||||
specificity # How many true negatives were accurately predicted?
|
||||
# TODO: Add IoU, F1, Precision, Recall, here.
|
||||
],
|
||||
)
|
||||
|
|
|
@ -2,7 +2,13 @@ import math
|
|||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def sensitivity(y_true, y_pred):
|
||||
ground_truth = tf.cast(y_true, dtype=tf.float32)
|
||||
prediction = tf.cast(y_pred, dtype=tf.float32)
|
||||
|
||||
recall = tf.keras.metrics.Recall()
|
||||
recall.update_state(y_true, y_pred)
|
||||
return recall.result()
|
||||
|
||||
class MetricSensitivity(tf.keras.metrics.Metric):
|
||||
"""An implementation of the sensitivity.
|
||||
|
|
|
@ -4,7 +4,8 @@ import tensorflow as tf
|
|||
|
||||
|
||||
def specificity(y_pred, y_true):
|
||||
"""
|
||||
"""An implementation of the specificity.
|
||||
In other words, a measure of how many of the true negatives were accurately predicted
|
||||
@source https://datascience.stackexchange.com/a/40746/86851
|
||||
param:
|
||||
y_pred - Predicted labels
|
||||
|
@ -12,34 +13,13 @@ def specificity(y_pred, y_true):
|
|||
Returns:
|
||||
Specificity score
|
||||
"""
|
||||
|
||||
y_true = tf.cast(y_true, dtype=tf.float32)
|
||||
y_pred = tf.cast(y_pred, dtype=tf.float32)
|
||||
|
||||
neg_y_true = 1 - y_true
|
||||
neg_y_pred = 1 - y_pred
|
||||
fp = K.sum(neg_y_true * y_pred)
|
||||
tn = K.sum(neg_y_true * neg_y_pred)
|
||||
specificity = tn / (tn + fp + K.epsilon())
|
||||
return specificity
|
||||
|
||||
|
||||
class MetricSpecificity(tf.keras.metrics.Metric):
|
||||
"""An implementation of the specificity.
|
||||
In other words, a measure of how many of the true negatives were accurately predicted
|
||||
@source
|
||||
Args:
|
||||
smooth (float): The batch size (currently unused).
|
||||
"""
|
||||
|
||||
def __init__(self, name="specificity", **kwargs):
|
||||
super(MetricSpecificity, self).__init__(name=name, **kwargs)
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
ground_truth = tf.cast(y_true, dtype=tf.float32)
|
||||
prediction = tf.cast(y_pred, dtype=tf.float32)
|
||||
|
||||
return specificity(ground_truth, prediction)
|
||||
|
||||
def get_config(self):
|
||||
config = super(MetricSpecificity, self).get_config()
|
||||
config.update({
|
||||
|
||||
})
|
||||
return config
|
||||
|
|
Loading…
Reference in a new issue