mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-22 01:12:59 +00:00
dlr: HACK: argmax to convert [64,128,128, 2] → [64,128,128]
This commit is contained in:
parent
94a32e7144
commit
3d051a8874
2 changed files with 11 additions and 26 deletions
|
@ -18,7 +18,7 @@ import tensorflow as tf
|
||||||
|
|
||||||
from lib.dataset.dataset_mono import dataset_mono
|
from lib.dataset.dataset_mono import dataset_mono
|
||||||
from lib.ai.components.LossCrossEntropyDice import LossCrossEntropyDice
|
from lib.ai.components.LossCrossEntropyDice import LossCrossEntropyDice
|
||||||
from lib.ai.components.MetricDice import dice_coefficient
|
from lib.ai.components.MetricDice import metric_dice_coefficient
|
||||||
from lib.ai.components.MetricSensitivity import sensitivity
|
from lib.ai.components.MetricSensitivity import sensitivity
|
||||||
from lib.ai.components.MetricSpecificity import specificity
|
from lib.ai.components.MetricSpecificity import specificity
|
||||||
|
|
||||||
|
@ -189,7 +189,7 @@ if PATH_CHECKPOINT is None:
|
||||||
loss=loss_fn,
|
loss=loss_fn,
|
||||||
metrics=[
|
metrics=[
|
||||||
"accuracy",
|
"accuracy",
|
||||||
dice_coefficient,
|
metric_dice_coefficient,
|
||||||
tf.keras.metrics.MeanIoU(num_classes=2),
|
tf.keras.metrics.MeanIoU(num_classes=2),
|
||||||
sensitivity, # How many true positives were accurately predicted
|
sensitivity, # How many true positives were accurately predicted
|
||||||
specificity # How many true negatives were accurately predicted?
|
specificity # How many true negatives were accurately predicted?
|
||||||
|
|
|
@ -14,32 +14,17 @@ def dice_coefficient(y_true, y_pred):
|
||||||
Returns:
|
Returns:
|
||||||
tf.Tensor: The computed Dice coefficient.
|
tf.Tensor: The computed Dice coefficient.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
y_true = tf.cast(y_true, dtype=tf.float32)
|
||||||
|
y_pred = tf.cast(y_pred, dtype=tf.float32)
|
||||||
|
|
||||||
y_pred = tf.math.sigmoid(y_pred)
|
y_pred = tf.math.sigmoid(y_pred)
|
||||||
numerator = 2 * tf.reduce_sum(y_true * y_pred)
|
numerator = 2 * tf.reduce_sum(y_true * y_pred)
|
||||||
denominator = tf.reduce_sum(y_true + y_pred)
|
denominator = tf.reduce_sum(y_true + y_pred)
|
||||||
|
|
||||||
return numerator / denominator
|
return numerator / denominator
|
||||||
|
|
||||||
class MetricDice(tf.keras.metrics.Metric):
|
|
||||||
"""An implementation of the dice loss function.
|
def metric_dice_coefficient(y_true, y_pred):
|
||||||
@source
|
y_pred = tf.math.argmax(y_pred)
|
||||||
Args:
|
return dice_coefficient(y_true, y_pred)
|
||||||
smooth (float): The batch size (currently unused).
|
|
||||||
"""
|
|
||||||
def __init__(self, name="dice_coefficient", smooth=100, **kwargs):
|
|
||||||
super(MetricDice, self).__init__(name=name, **kwargs)
|
|
||||||
|
|
||||||
self.param_smooth = smooth
|
|
||||||
|
|
||||||
def call(self, y_true, y_pred):
|
|
||||||
ground_truth = tf.cast(y_true, dtype=tf.float32)
|
|
||||||
prediction = tf.cast(y_pred, dtype=tf.float32)
|
|
||||||
|
|
||||||
return dice_coef(ground_truth, prediction, smooth=self.param_smooth)
|
|
||||||
|
|
||||||
def get_config(self):
|
|
||||||
config = super(MetricDice, self).get_config()
|
|
||||||
config.update({
|
|
||||||
"smooth": self.param_smooth,
|
|
||||||
})
|
|
||||||
return config
|
|
Loading…
Reference in a new issue