104 lines
2.3 KiB
JavaScript
104 lines
2.3 KiB
JavaScript
"use strict";
|
|
|
|
import path from 'path';
|
|
|
|
import brain from 'brain.js';
|
|
import haversine from 'haversine-distance';
|
|
|
|
import {
|
|
normalise_lat,
|
|
normalise_lng,
|
|
unnormalise_lat,
|
|
unnormalise_lng,
|
|
|
|
normalise_gateway_distance,
|
|
unnormalise_gateway_distance,
|
|
|
|
normalise_rssi,
|
|
unnormalise_rssi
|
|
} from '../../../common/Normalisers.mjs';
|
|
|
|
import GetFromUrl from '../Helpers/GetFromUrl.mjs';
|
|
|
|
class AIWrapper {
|
|
constructor() {
|
|
this.setup_complete = false;
|
|
|
|
this.map_bounds = null;
|
|
this.index = null;
|
|
this.Config = null;
|
|
|
|
this.gateways = new Map();
|
|
}
|
|
|
|
async setup({ bounds, index, Config }) {
|
|
this.map_bounds = bounds;
|
|
this.index = index;
|
|
this.Config = Config;
|
|
|
|
console.log("Loading models");
|
|
|
|
// WebGL isn't available inside WebWorkers yet :-(
|
|
|
|
for(let gateway of this.index.index) {
|
|
let net = new brain.NeuralNetwork();
|
|
net.fromJSON(
|
|
// TODO: Move this to the UI thread & do it only once?
|
|
await GetFromUrl(`${path.dirname(self.location.href)}/${path.dirname(this.Config.ai_index_file)}/${gateway.filename}`)
|
|
);
|
|
|
|
this.gateways.set(
|
|
gateway.id,
|
|
net
|
|
);
|
|
}
|
|
console.log("Model setup complete.");
|
|
this.setup_complete = true;
|
|
}
|
|
|
|
predict_row(lat) {
|
|
if(!this.setup_complete)
|
|
throw new Error("Error: Can't do predictions until the setup is complete.");
|
|
|
|
let result = [],
|
|
stats = {
|
|
rssi_min: Infinity,
|
|
rssi_max: -Infinity
|
|
};
|
|
|
|
for(let lng = this.map_bounds.west; lng < this.map_bounds.east; lng += this.Config.step.lng) {
|
|
let max_predicted_rssi = -Infinity;
|
|
|
|
for(let [gateway_id, ai] of this.gateways) {
|
|
let distance_from_gateway = haversine(
|
|
{ latitude: lat, longitude: lng },
|
|
this.gateways.get(gateway_id)
|
|
);
|
|
|
|
max_predicted_rssi = Math.max(
|
|
max_predicted_rssi,
|
|
ai.run({
|
|
latitude: normalise_lat(lat),
|
|
longitude: normalise_lng(lng),
|
|
distance: normalise_gateway_distance(
|
|
distance_from_gateway
|
|
),
|
|
})[0]
|
|
);
|
|
}
|
|
|
|
max_predicted_rssi = unnormalise_rssi(max_predicted_rssi);
|
|
|
|
if(max_predicted_rssi > stats.rssi_max)
|
|
stats.rssi_max = max_predicted_rssi;
|
|
if(max_predicted_rssi < stats.rssi_min)
|
|
stats.rssi_min = max_predicted_rssi;
|
|
|
|
result.push(max_predicted_rssi);
|
|
}
|
|
|
|
return { result, stats };
|
|
}
|
|
}
|
|
|
|
export default AIWrapper;
|