LoRaWAN-Signal-Mapping/iot/main/transmission.cpp

177 lines
5.7 KiB
C++

#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include "settings.h"
#include "storage.h"
// Global static variable that's used to detect when LMIC has finished doing it's thing
bool is_sending_complete = false;
// Defined as part of LMIC, but LMIC is compiled and linked in separately
extern "C" void lmic_aes_encrypt(unsigned char *Data, unsigned char *Key);
void transmit_counter_save() {
store_eeprom_uint32_save(0, LMIC.seqnoUp);
store_eeprom_uint32_save(sizeof(uint32_t), LMIC.seqnoDn);
}
void transmit_init() {
Serial.println(F("[LMIC] Init"));
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// Set static session parameters. Instead of dynamically establishing a session
// by joining the network, precomputed session parameters are be provided.
#ifdef PROGMEM
// On AVR, these values are stored in flash and only copied to RAM
// once. Copy them to a temporary buffer here, LMIC_setSession will
// copy them into a buffer of its own again.
uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
#else
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
#endif
// Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly
// works, so it is good for debugging, but can overload those
// frequencies, so be sure to configure the full frequency range of
// your network here (unless your network autoconfigures them).
// Setting up channels should happen after LMIC_setSession, as that
// configures the minimal channel set.
LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band
LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band
// TTN defines an additional channel at 869.525Mhz using SF9 for class B
// devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this
// frequency is not configured here.
// Disable link check validation
LMIC_setLinkCheckMode(0);
// Set data rate and transmit power (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14);
// Restore the frame counters
LMIC.seqnoUp = store_eeprom_uint32_retrieve(0);
LMIC.seqnoDn = store_eeprom_uint32_retrieve(sizeof(uint32_t));
// Serial.println(LMIC.seqnoUp);
if(LMIC.seqnoUp >= 4294967295) { // The default value
LMIC.seqnoUp = LMIC.seqnoDn = 0; // Reset to 0
transmit_counter_save();
}
}
/**
* Sends a specified message via LoRaWAN.
* @param data The message to send.
* @param length The length of the given message.
*/
bool transmit_send(uint8_t* data, int length) {
// Encrypt the data with the extra encryption key
lmic_aes_encrypt(data, encrypt_key);
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
// Serial.println(F("OP_TXRXPEND: Job running, can't send"));
return false;
}
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, data, length, 0);
Serial.println(F("done"));
// Run the LMIC loop, but only until it's finished sending the packet
while (!is_sending_complete) {
os_runloop_once();
}
// Persist the frame counters
transmit_counter_save();
// Reset it for next time (just in case)
is_sending_complete = false;
return true;
}
void onEvent (ev_t ev) {
Serial.print(millis());
Serial.print(" ");
switch(ev) {
/*case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;*/
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE incl. RX"));
if(LMIC.dataLen) {
// data received in rx slot after tx
Serial.print(F("Received: "));
Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);
Serial.println();
}
// We're done!
is_sending_complete = true;
break;
/*case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;*/
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
/*case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;*/
default:
Serial.print(F("Unknown event "));
Serial.println(ev);
break;
}
}