Serialise trained AIs and save them to disk
This commit is contained in:
parent
dd9d39ba52
commit
92574bc98c
2 changed files with 30 additions and 3 deletions
|
@ -67,6 +67,9 @@ batch_size = 32
|
|||
# The number of epochs to train for.
|
||||
epochs = 5
|
||||
|
||||
# The directory to output trained AIs to, relative to the repository root.
|
||||
output_directory = "app/ais/"
|
||||
|
||||
[logging]
|
||||
# The format the date displayed when logging things should take.
|
||||
# Allowed values: relative (e.g like when a Linux machine boots), absolute (e.g. like Nginx server logs), none (omits it entirely))
|
||||
|
|
|
@ -1,14 +1,19 @@
|
|||
"use strict";
|
||||
|
||||
import path from 'path';
|
||||
import fs from 'fs';
|
||||
|
||||
import tf from '@tensorflow/tfjs-node-gpu';
|
||||
|
||||
class AITrainer {
|
||||
constructor({ settings, log, GatewayRepo, DatasetFetcher }) {
|
||||
constructor({ settings, log, root_dir, GatewayRepo, DatasetFetcher }) {
|
||||
this.settings = settings;
|
||||
this.root_dir = root_dir;
|
||||
this.l = log;
|
||||
this.dataset_fetcher = DatasetFetcher;
|
||||
this.repo_gateway = GatewayRepo;
|
||||
this.model = this.generate_model();
|
||||
|
||||
}
|
||||
|
||||
generate_model() {
|
||||
|
@ -36,12 +41,29 @@ class AITrainer {
|
|||
}
|
||||
|
||||
async train_all() {
|
||||
|
||||
for(let gateway of this.repo_gateway.iterate()) {
|
||||
await this.train_gateway(gateway.id);
|
||||
let filename = path.join(this.root_dir, "..", this.settings.ai.output_directory, `${gateway.id}`);
|
||||
console.log(filename);
|
||||
|
||||
if(!fs.existsSync(path.dirname(filename)))
|
||||
await fs.promises.mkdir(path.dirname(filename), { recursive: true });
|
||||
|
||||
await this.train_gateway(
|
||||
gateway.id,
|
||||
filename
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
async train_gateway(gateway_id) {
|
||||
/**
|
||||
* Trains an AI to predict the coverage of a specific gateway.
|
||||
* @param {string} gateway_id The id of the gateway to train an AI for.
|
||||
* @param {string} destination_filename The absolute path to the file to serialise the trained to. Required because we can't serialise and return a TensorFlow model, it has to be sent somewhere because the API is backwards and upside-down :-/
|
||||
* @return {Promise} A promise that resolves when training and serialisation is complete.
|
||||
*/
|
||||
async train_gateway(gateway_id, destination_filename) {
|
||||
// TODO: Add samples here for locations that the gateway does NOT cover too
|
||||
let dataset_input = tf.data.generator(
|
||||
this.dataset_fetcher.fetch_input.bind(this.dataset_fetcher, gateway_id)
|
||||
);
|
||||
|
@ -60,6 +82,8 @@ class AITrainer {
|
|||
epochs: this.settings.ai.epochs,
|
||||
batchSize: this.settings.ai.batch_size
|
||||
});
|
||||
|
||||
await this.model.save(`file://${destination_filename}`);
|
||||
console.log(result);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue