research-rainfallradar/aimodel/src/lib/ai/RainfallWaterContraster.py
Starbeamrainbowlabs c0a9cb12d8
ai: start creating initial model implementation.
it's not hooked up to the CLI yet though.
Focus is still on ensuring the dataset is in the right format though
2022-08-10 19:03:25 +01:00

85 lines
No EOL
2.6 KiB
Python

import os
import io
import re
import sys
import json
import tensorflow as tf
from ..io.readfile import readfile
from ..io.writefile import writefile
from .model_rainfallwater_contrastive import model_rainfallwater_contrastive
from .helpers import make_callbacks
from .helpers import summarywriter
from .components.LayerContrastiveEncoder import LayerContrastiveEncoder
from .components.LayerCheeseMultipleOut import LayerCheeseMultipleOut
from .helpers.summarywriter import summarywriter
class RainfallWaterContraster(object):
def __init__(self, dir_output=None, filepath_checkpoint=None, epochs=50, batch_size=64, **kwargs):
super(RainfallWaterContraster, self).__init__()
self.dir_output = dir_output
self.epochs = epochs
self.kwargs = kwargs
self.batch_size = batch_size
if filepath_checkpoint == None:
self.model = self.make_model()
if self.dir_output == None:
raise Exception("Error: dir_output was not specified, and since no checkpoint was loaded training mode is activated.")
if not os.path.exists(self.dir_output):
os.mkdir(self.dir_output)
self.filepath_summary = os.path.join(self.dir_output, "summary.txt")
summarywriter(self.model, self.filepath_summary)
writefile(os.path.join(self.dir_output, "params.json"), json.dumps(self.model.get_config()))
else:
self.model = self.load_model(filepath_checkpoint)
@staticmethod
def from_checkpoint(filepath_checkpoint, filepath_hyperparams):
hyperparams = json.loads(readfile(filepath_hyperparams))
return RainfallWaterContraster(filepath_checkpoint=filepath_checkpoint, **hyperparams)
def make_model(self):
model = model_rainfallwater_contrastive(batch_size=self.batch_size, **self.kwargs)
return model
def load_model(self, filepath_checkpoint):
"""
Loads a saved model from the given filename.
filepath_checkpoint (string): The filepath to load the saved model from.
"""
return tf.keras.models.load_model(filepath_checkpoint, custom_objects={
"LayerContrastiveEncoder": LayerContrastiveEncoder,
"LayerCheeseMultipleOut": LayerCheeseMultipleOut
})
def train(self, dataset_train, dataset_validate):
return self.model.fit(
dataset_train,
validation_data=dataset_validate,
epochs=self.epochs,
callbacks=make_callbacks(self.dir_output)
)
def embed(self, dataset):
result = []
i_batch = -1
for batch in dataset:
i_batch += 1
result_batch = self.model(batch[0])
# Currently, the left and right should be the same
left, _ = tf.unstack(result_batch, axis=-2)
result_batch = tf.unstack(left, axis=0)
result.extend(result_batch)
return result