research-rainfallradar/aimodel/src/lib/ai/model_rainfallwater_segmentation.py

38 lines
No EOL
1.2 KiB
Python

import math
from loguru import logger
import tensorflow as tf
from .components.convnext_inverse import do_convnext_inverse
def model_rainfallwater_segmentation(metadata, feature_dim_in, shape_water_out, batch_size=64, summary_file=None):
out_water_width, out_water_height = shape_water_out
layer_input = tf.keras.layers.Input(
shape=(feature_dim_in)
)
# BEGIN
layer_next = tf.keras.layers.Dense(name="cns.stage.begin.dense", units=feature_dim_in)(layer_input)
layer_next = tf.keras.layers.LayerNormalization(name="stage_begin.norm", epsilon=1e-6)(layer_next)
layer_next = tf.keras.layers.ReLU(name="stage_begin.relu")(layer_next)
layer_next = do_convnext_inverse(layer_next, arch_name="convnext_i_tiny")
# TODO: An attention layer here instead of a dense layer, with a skip connection perhaps?
layer_next = tf.keras.layers.Dense(32)(layer_next)
layer_next = tf.keras.layers.Conv2D(1, kernel_size=1, activation="softmax", padding="same")(layer_next)
model = tf.keras.Model(
inputs = layer_input,
outputs = layer_next
)
model.compile(
optimizer="Adam",
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=["accuracy"]
)
return model