research-rainfallradar/aimodel/src/deeplabv3_plus_test_rainfall.py
2023-01-16 17:30:20 +00:00

324 lines
12 KiB
Python
Executable file

#!/usr/bin/env python3
# @source https://keras.io/examples/vision/deeplabv3_plus/
# Required dataset: https://drive.google.com/uc?id=1B9A9UCJYMwTL4oBEo4RZfbMZMaZhKJaz [instance-level-human-parsing.zip]
from datetime import datetime
from loguru import logger
from lib.ai.helpers.summarywriter import summarywriter
from lib.ai.components.CallbackCustomModelCheckpoint import CallbackCustomModelCheckpoint
import os
import cv2
import numpy as np
from glob import glob
from scipy.io import loadmat
import matplotlib.pyplot as plt
import tensorflow as tf
from lib.dataset.dataset_mono import dataset_mono
from lib.ai.components.LossCrossEntropyDice import LossCrossEntropyDice
time_start = datetime.now()
logger.info(f"Starting at {str(datetime.now().isoformat())}")
IMAGE_SIZE = int(os.environ["IMAGE_SIZE"]) if "IMAGE_SIZE" in os.environ else 128 # was 512; 128 is the highest power of 2 that fits the data
BATCH_SIZE = int(os.environ["BATCH_SIZE"]) if "BATCH_SIZE" in os.environ else 64
NUM_CLASSES = 2
DIR_RAINFALLWATER = os.environ["DIR_RAINFALLWATER"]
PATH_HEIGHTMAP = os.environ["PATH_HEIGHTMAP"]
PATH_COLOURMAP = os.environ["PATH_COLOURMAP"]
STEPS_PER_EPOCH = int(os.environ["STEPS_PER_EPOCH"]) if "STEPS_PER_EPOCH" in os.environ else None
REMOVE_ISOLATED_PIXELS = FALSE if "NO_REMOVE_ISOLATED_PIXELS" in os.environ else True
EPOCHS = int(os.environ["EPOCHS"]) if "EPOCHS" in os.environ else 25
LOSS = os.environ["LOSS"] if "LOSS" in os.environ else "cross-entropy"
LEARNING_RATE = float(os.environ["LEARNING_RATE"]) if "LEARNING_RATE" in os.environ else 0.001
DIR_OUTPUT=os.environ["DIR_OUTPUT"] if "DIR_OUTPUT" in os.environ else f"output/{datetime.utcnow().date().isoformat()}_deeplabv3plus_rainfall_TEST"
PATH_CHECKPOINT = os.environ["PATH_CHECKPOINT"] if "PATH_CHECKPOINT" in os.environ else None
PREDICT_COUNT = int(os.environ["PREDICT_COUNT"]) if "PREDICT_COUNT" in os.environ else 4
if not os.path.exists(DIR_OUTPUT):
os.makedirs(os.path.join(DIR_OUTPUT, "checkpoints"))
logger.info("DeepLabV3+ rainfall radar TEST")
logger.info(f"> BATCH_SIZE {BATCH_SIZE}")
logger.info(f"> DIR_RAINFALLWATER {DIR_RAINFALLWATER}")
logger.info(f"> PATH_HEIGHTMAP {PATH_HEIGHTMAP}")
logger.info(f"> PATH_COLOURMAP {PATH_COLOURMAP}")
logger.info(f"> STEPS_PER_EPOCH {STEPS_PER_EPOCH}")
logger.info(f"> REMOVE_ISOLATED_PIXELS {REMOVE_ISOLATED_PIXELS} [NO_REMOVE_ISOLATED_PIXELS]")
logger.info(f"> EPOCHS {EPOCHS}")
logger.info(f"> LOSS {LOSS}")
logger.info(f"> DIR_OUTPUT {DIR_OUTPUT}")
logger.info(f"> PATH_CHECKPOINT {PATH_CHECKPOINT}")
logger.info(f"> PREDICT_COUNT {PREDICT_COUNT}")
dataset_train, dataset_validate = dataset_mono(
dirpath_input=DIR_RAINFALLWATER,
batch_size=BATCH_SIZE,
water_threshold=0.1,
rainfall_scale_up=2, # done BEFORE cropping to the below size
output_size=IMAGE_SIZE,
input_size="same",
filepath_heightmap=PATH_HEIGHTMAP,
do_remove_isolated_pixels=REMOVE_ISOLATED_PIXELS
)
logger.info("Train Dataset:", dataset_train)
logger.info("Validation Dataset:", dataset_validate)
# ███ ███ ██████ ██████ ███████ ██
# ████ ████ ██ ██ ██ ██ ██ ██
# ██ ████ ██ ██ ██ ██ ██ █████ ██
# ██ ██ ██ ██ ██ ██ ██ ██ ██
# ██ ██ ██████ ██████ ███████ ███████
if PATH_CHECKPOINT is None:
def convolution_block(
block_input,
num_filters=256,
kernel_size=3,
dilation_rate=1,
padding="same",
use_bias=False,
):
x = tf.keras.layers.Conv2D(
num_filters,
kernel_size=kernel_size,
dilation_rate=dilation_rate,
padding="same",
use_bias=use_bias,
kernel_initializer=tf.keras.initializers.HeNormal(),
)(block_input)
x = tf.keras.layers.BatchNormalization()(x)
return tf.nn.relu(x)
def DilatedSpatialPyramidPooling(dspp_input):
dims = dspp_input.shape
x = tf.keras.layers.AveragePooling2D(pool_size=(dims[-3], dims[-2]))(dspp_input)
x = convolution_block(x, kernel_size=1, use_bias=True)
out_pool = tf.keras.layers.UpSampling2D(
size=(dims[-3] // x.shape[1], dims[-2] // x.shape[2]), interpolation="bilinear",
)(x)
out_1 = convolution_block(dspp_input, kernel_size=1, dilation_rate=1)
out_6 = convolution_block(dspp_input, kernel_size=3, dilation_rate=6)
out_12 = convolution_block(dspp_input, kernel_size=3, dilation_rate=12)
out_18 = convolution_block(dspp_input, kernel_size=3, dilation_rate=18)
x = tf.keras.layers.Concatenate(axis=-1)([out_pool, out_1, out_6, out_12, out_18])
output = convolution_block(x, kernel_size=1)
return output
def DeeplabV3Plus(image_size, num_classes, num_channels=3):
model_input = tf.keras.Input(shape=(image_size, image_size, num_channels))
resnet50 = tf.keras.applications.ResNet50(
weights="imagenet" if num_channels == 3 else None,
include_top=False, input_tensor=model_input
)
x = resnet50.get_layer("conv4_block6_2_relu").output
x = DilatedSpatialPyramidPooling(x)
input_a = tf.keras.layers.UpSampling2D(
size=(image_size // 4 // x.shape[1], image_size // 4 // x.shape[2]),
interpolation="bilinear",
)(x)
input_b = resnet50.get_layer("conv2_block3_2_relu").output
input_b = convolution_block(input_b, num_filters=48, kernel_size=1)
x = tf.keras.layers.Concatenate(axis=-1)([input_a, input_b])
x = convolution_block(x)
x = convolution_block(x)
x = tf.keras.layers.UpSampling2D(
size=(image_size // x.shape[1], image_size // x.shape[2]),
interpolation="bilinear",
)(x)
model_output = tf.keras.layers.Conv2D(num_classes, kernel_size=(1, 1), padding="same")(x)
return tf.keras.Model(inputs=model_input, outputs=model_output)
model = DeeplabV3Plus(image_size=IMAGE_SIZE, num_classes=NUM_CLASSES, num_channels=8)
summarywriter(model, os.path.join(DIR_OUTPUT, "summary.txt"))
else:
model = tf.keras.models.load_model(PATH_CHECKPOINT)
# ████████ ██████ █████ ██ ███ ██ ██ ███ ██ ██████
# ██ ██ ██ ██ ██ ██ ████ ██ ██ ████ ██ ██
# ██ ██████ ███████ ██ ██ ██ ██ ██ ██ ██ ██ ██ ███
# ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
# ██ ██ ██ ██ ██ ██ ██ ████ ██ ██ ████ ██████
if PATH_CHECKPOINT is None:
loss_fn = None
if LOSS == "cross-entropy-dice":
loss_fn = LossCrossEntropyDice()
elif LOSS == "cross-entropy":
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
else:
raise Exception(f"Error: Unknown loss function '{LOSS}' (possible values: cross-entropy, cross-entropy-dice).")
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE),
loss=loss_fn,
metrics=["accuracy"],
)
logger.info(">>> Beginning training")
history = model.fit(dataset_train,
validation_data=dataset_validate,
epochs=EPOCHS,
callbacks=[
tf.keras.callbacks.CSVLogger(
filename=os.path.join(DIR_OUTPUT, "metrics.tsv"),
separator="\t"
),
CallbackCustomModelCheckpoint(
model_to_checkpoint=model,
filepath=os.path.join(
DIR_OUTPUT,
"checkpoints",
"checkpoint_e{epoch:d}_loss{loss:.3f}.hdf5"
),
monitor="loss"
),
],
steps_per_epoch=STEPS_PER_EPOCH,
)
logger.info(">>> Training complete")
logger.info(">>> Plotting graphs")
plt.plot(history.history["loss"])
plt.title("Training Loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.savefig(os.path.join(DIR_OUTPUT, "loss.png"))
plt.close()
plt.plot(history.history["accuracy"])
plt.title("Training Accuracy")
plt.ylabel("accuracy")
plt.xlabel("epoch")
plt.savefig(os.path.join(DIR_OUTPUT, "acc.png"))
plt.close()
plt.plot(history.history["val_loss"])
plt.title("Validation Loss")
plt.ylabel("val_loss")
plt.xlabel("epoch")
plt.savefig(os.path.join(DIR_OUTPUT, "val_loss.png"))
plt.close()
plt.plot(history.history["val_accuracy"])
plt.title("Validation Accuracy")
plt.ylabel("val_accuracy")
plt.xlabel("epoch")
plt.savefig(os.path.join(DIR_OUTPUT, "val_acc.png"))
plt.close()
# ██ ███ ██ ███████ ███████ ██████ ███████ ███ ██ ██████ ███████
# ██ ████ ██ ██ ██ ██ ██ ██ ████ ██ ██ ██
# ██ ██ ██ ██ █████ █████ ██████ █████ ██ ██ ██ ██ █████
# ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
# ██ ██ ████ ██ ███████ ██ ██ ███████ ██ ████ ██████ ███████
# Loading the Colormap
colormap = loadmat(
PATH_COLOURMAP
)["colormap"]
colormap = colormap * 100
colormap = colormap.astype(np.uint8)
def infer(model, image_tensor):
predictions = model.predict(tf.expand_dims((image_tensor), axis=0))
predictions = tf.squeeze(predictions)
predictions = tf.argmax(predictions, axis=2)
return predictions
def decode_segmentation_masks(mask, colormap, n_classes):
r = np.zeros_like(mask).astype(np.uint8)
g = np.zeros_like(mask).astype(np.uint8)
b = np.zeros_like(mask).astype(np.uint8)
for l in range(0, n_classes):
idx = mask == l
r[idx] = colormap[l, 0]
g[idx] = colormap[l, 1]
b[idx] = colormap[l, 2]
rgb = np.stack([r, g, b], axis=2)
return rgb
def get_overlay(image, coloured_mask):
image = tf.keras.preprocessing.image.array_to_img(image)
image = np.array(image).astype(np.uint8)
overlay = cv2.addWeighted(image, 0.35, coloured_mask, 0.65, 0)
return overlay
def plot_samples_matplotlib(filepath, display_list):
for i in range(len(display_list)):
plt.subplot(1, len(display_list), i+1)
if display_list[i].shape[-1] == 3:
plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
else:
plt.imshow(display_list[i])
plt.savefig(filepath, dpi=200)
def plot_predictions(filepath, input_items, colormap, model):
i = 0
for input_pair in input_items:
prediction_mask = infer(image_tensor=input_pair[0], model=model)
# label_colourmap = decode_segmentation_masks(input_pair[1], colormap, 2)
prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 2)
# print("DEBUG:plot_predictions INFER", str(prediction_mask.numpy().tolist()).replace("], [", "],\n["))
plot_samples_matplotlib(
filepath.replace("$$", str(i)),
[
# input_tensor,
input_pair[1], #label_colourmap
prediction_colormap
]
)
i += 1
def get_from_batched(dataset, count):
result = []
for batched in dataset:
items_input = tf.unstack(batched[0], axis=0)
items_label = tf.unstack(batched[1], axis=0)
for item in zip(items_input, items_label):
result.append(item)
if len(result) >= count:
return result
plot_predictions(
os.path.join(DIR_OUTPUT, "predict_train_$$.png"),
get_from_batched(dataset_train, PREDICT_COUNT),
colormap,
model=model
)
plot_predictions(
os.path.join(DIR_OUTPUT, "predict_validate_$$.png"),
get_from_batched(dataset_validate, PREDICT_COUNT),
colormap,
model=model
)
logger.info(f"Complete at {str(datetime.now().isoformat())}, elapsed {str((datetime.now() - time_start).total_seconds())} seconds")