research-rainfallradar/aimodel/scripts/crossval-stbl.py
Starbeamrainbowlabs 5a412ddc26
scripts/crossval-stbl: finish off the script
TODO switch ou  median absolute distance for something else when Nina replies
2024-12-20 18:37:18 +00:00

119 lines
3.4 KiB
Python
Executable file

#!/usr/bin/env python3
import os
import sys
from loguru import logger
import pandas as pd
import scipy
from matplotlib import pyplot as plt
# This script analyses metrics.tsv files from a series of identical experiments and reports metrics on them.
# This is sometimes known as cross-validation, but we usually use the model series code crossval-stblX, where X is an integer >0.
if len(sys.argv) <= 1:
print("""
Usage:
scripts/stbl-crossval.mjs {{path/to/directory}}
...in which the given directory contains a series of experiment root directories to include in the statistical analysis.
This script is not picky about the format of the data in metrics.tsv, so long as it's in the form:
epoch metric_A metric_B …
0 val:float val:float …
1 val:float val:float …
2 val:float val:float …
""")
sys.exit(0)
DIRPATH = sys.argv[1] # [0] == script path
files = 0
metrics = {}
epochs = None
for filepath in os.scandir(DIRPATH):
if not os.path.isdir(filepath):
continue
tbl = pd.read_csv(os.path.join(filepath, "metrics.tsv"), sep="\t")
# metrics.append(tbl)
for column in tbl.columns:
if column == "epoch":
if epochs is None:
epochs = tbl[column]
continue # Row index implicitly retains this
if column not in metrics:
metrics[column] = []
metrics[column].append(tbl[column].values)
# print(column, tbl[column])
# print("DEBUG:metrics", tbl)
files += 1
logger.info(f"Read {files} files into crossval-stbl{files} analysis")
stats = {}
for metric in metrics.keys():
metrics[metric] = pd.DataFrame(metrics[metric]).transpose()
if metric not in stats:
stats[metric] = {}
stats[metric]["mad"] = scipy.stats.median_abs_deviation(
metrics[metric], axis=1
) # median absolute deviation
stats[metric]["stddev"] = metrics[metric].std(axis=1)
stats[metric]["mean"] = metrics[metric].mean(axis=1)
stats[metric]["min"] = metrics[metric].min(axis=1)
stats[metric]["max"] = metrics[metric].max(axis=1)
stats[metric]["agg_min"] = stats[metric]["min"].min()
stats[metric]["agg_max"] = stats[metric]["max"].max()
stats[metric]["agg_stddev"] = metrics[metric].stack().std()
stats[metric]["agg_mean"] = metrics[metric].stack().std()
stats[metric]["agg_mad"] = scipy.stats.median_abs_deviation(
metrics[metric].stack()
) # median absolute deviation
# print(stats[metric])
plt.figure(figsize=(12, 8))
plt.ylim(min(0, stats[metric]["agg_min"]), max(1, stats[metric]["agg_max"]))
plt.grid(visible=True, which="major", axis="y", linewidth=2)
plt.grid(visible=True, which="minor", axis="y", linewidth=1)
plt.minorticks_on()
plt.fill_between(
epochs,
stats[metric]["min"],
stats[metric]["max"],
alpha=0.2,
facecolor="#B7DE28",
edgecolor="#FDE724",
linestyle="dotted",
linewidth=1,
)
plt.fill_between(
epochs,
stats[metric]["mean"] - stats[metric]["mad"],
stats[metric]["mean"] + stats[metric]["mad"],
alpha=0.5,
facecolor="#228A8D",
edgecolor="#3CBB74",
linestyle="dashed",
linewidth=1,
)
plt.plot(epochs, stats[metric]["mean"], color="#450C54")
plt.title(f"{metric} // crossval-stbl{files}")
plt.xlabel("epoch")
plt.ylabel(metric)
plt.savefig(os.path.join(DIRPATH, f"crossval-stbl{files}_{metric}.png"))
plt.close()
logger.success(f"Written {len(stats.keys())} graphs to {DIRPATH}")