mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-14 13:43:02 +00:00
43 lines
1.6 KiB
Python
43 lines
1.6 KiB
Python
|
|
import argparse
|
|
import sys
|
|
import re
|
|
import importlib
|
|
|
|
# import pysnooper
|
|
|
|
# @pysnooper.snoop()
|
|
def parse_args():
|
|
"""Defines and parses the CLI arguments."""
|
|
|
|
|
|
if len(sys.argv) < 2 or sys.argv[1] == "--help":
|
|
sys.stderr.write("""
|
|
This program trains, manipulates, visualises, and manages a contrastive learning based rainfall radar → water depth prediction model.
|
|
It functions by first finding relationships between the rainfall radar data and the water depth + heightmap data (the 'pretrain' subcommand). After this, a decoder model to predict water depth (modelled as an image segmentation task), can then be trained.
|
|
|
|
Available subcommands:
|
|
pretrain Pretrain a contrastive learning model as an encoder.
|
|
pretrain-predict Make predictions using a trained contrastive learning encoder.
|
|
pretrain-plot Plot using embeddings predicted using pretrain-predict.
|
|
|
|
For more information, do src/index.py <subcommand> --help.
|
|
""")
|
|
exit(0)
|
|
|
|
subcommand = re.sub(r'-', '_', re.sub(r'[^a-z0-9-]', '', sys.argv[1]))
|
|
|
|
subcommand_argparser = importlib.import_module(f"subcommands.{subcommand}").parse_args
|
|
|
|
parser = subcommand_argparser()
|
|
# sys.stderr.write(f"Error: Unknown subcommand '{subcommand} (try --help).\n")
|
|
# exit(1)
|
|
if parser == None:
|
|
sys.stderr.write(f"Error: The subcommand '{subcommand}' did not return an argument parser. This is a bug.\n")
|
|
exit(1)
|
|
|
|
parser.add_argument("--only-gpu",
|
|
help="If the GPU is not available, exit with an error (useful on shared HPC systems to avoid running out of memory & affecting other users)", action="store_true")
|
|
|
|
return subcommand, parser.parse_args(args=sys.argv[2:])
|
|
|