|
d31326cb30
|
slurm train mono: fix partition name
|
2022-11-22 17:02:02 +00:00 |
|
|
ce28ac4013
|
slurm: add job for train_mono
|
2022-11-22 16:58:46 +00:00 |
|
|
3a0356929c
|
mono: drop the sparse
|
2022-11-22 16:20:56 +00:00 |
|
|
7e8f63f8ba
|
fixup
|
2022-11-21 19:38:24 +00:00 |
|
|
ace4c8b246
|
dataset_mono: debug
|
2022-11-21 18:46:21 +00:00 |
|
|
527b34942d
|
convnext_inverse: kernel_size 4→2
|
2022-11-11 19:29:37 +00:00 |
|
|
0662d0854b
|
model_mono: fix bottleneck
|
2022-11-11 19:11:40 +00:00 |
|
|
73acda6d9a
|
fix debug logging
|
2022-11-11 19:08:38 +00:00 |
|
|
9da059d738
|
model shape logging
|
2022-11-11 19:03:37 +00:00 |
|
|
00917b2698
|
dataset_mono: log shapes
|
2022-11-11 19:02:43 +00:00 |
|
|
54ae88b1b4
|
in this entire blasted project I have yet to get the rotation of anything correct....!
|
2022-11-11 18:58:45 +00:00 |
|
|
a7a475dcd1
|
debug 2
|
2022-11-11 18:38:07 +00:00 |
|
|
bf2f6e9b64
|
debug logging
it begins again
|
2022-11-11 18:31:40 +00:00 |
|
|
481eeb3759
|
mono: fix dataset preprocessing
rogue dimension
|
2022-11-11 18:31:27 +00:00 |
|
|
9035450213
|
mono: instantiate right model
|
2022-11-11 18:28:29 +00:00 |
|
|
69a2d0cf04
|
fixup
|
2022-11-11 18:27:01 +00:00 |
|
|
65e801cf28
|
train_mono: fix crash
|
2022-11-11 18:26:25 +00:00 |
|
|
8ac5159adc
|
dataset_mono: simplify param passing, onehot+threshold water depth data
|
2022-11-11 18:23:50 +00:00 |
|
|
3a3f7e85da
|
typo
|
2022-11-11 18:03:09 +00:00 |
|
|
3313f77c88
|
Add (untested) mono rainfall → water depth model
* sighs *
Unfortunately I can't seem to get contrastive learning to work.....
|
2022-11-10 22:36:11 +00:00 |
|
|
ce194d9227
|
slurm: customise log file names
|
2022-11-10 21:09:34 +00:00 |
|
|
9384b89165
|
model_segmentation: spare → normal crossentropy, activation functions at end
|
2022-11-10 20:53:37 +00:00 |
|
|
b6676e7361
|
switch from sparse to normal crossentropy
|
2022-11-10 20:50:56 +00:00 |
|
|
d8be26d476
|
Merge branch 'main' of git.starbeamrainbowlabs.com:sbrl/PhD-Rainfall-Radar
|
2022-11-10 20:49:01 +00:00 |
|
|
b03388de60
|
dataset_segmenter: DEBUG: fix water shape
|
2022-11-10 20:48:21 +00:00 |
|
|
daf691bf43
|
typo
|
2022-11-10 19:55:00 +00:00 |
|
|
0aa2ce19f5
|
read_metadata: support file inputs as well as dirs
|
2022-11-10 19:53:30 +00:00 |
|
|
aa7d9b8cf6
|
fixup
|
2022-11-10 19:46:09 +00:00 |
|
|
0894bd09e8
|
train_predict: add error message for parrams.json not found
|
2022-11-10 19:45:41 +00:00 |
|
|
0353072d15
|
allow pretrain to run on gpu
we've slashed the size of the 2nd encoder, so ti should fit naow?
|
2022-11-04 17:02:07 +00:00 |
|
|
44ad51f483
|
CallbackNBatchCsv: bugfix .sort() → sorted()
|
2022-11-04 16:40:21 +00:00 |
|
|
4dddcfcb42
|
pretrain_predict: missing \n
|
2022-11-04 16:01:28 +00:00 |
|
|
1375201c5f
|
CallbackNBatchCsv: open_handle mode
|
2022-11-03 18:29:00 +00:00 |
|
|
3206d6b7e7
|
slurm: rename segmenter job name
|
2022-11-03 17:12:27 +00:00 |
|
|
f2ae74ce7b
|
how could I be so stupid..... round 2
|
2022-11-02 17:38:26 +00:00 |
|
|
5f8d6dc6ea
|
Add metrics every 64 batches
this is important, because with large batches it can be difficult to tell what's happening inside each epoch.
|
2022-10-31 19:26:10 +00:00 |
|
|
cf872ef739
|
how could I be so *stupid*......
|
2022-10-31 18:40:58 +00:00 |
|
|
da32d75778
|
make_callbacks: display steps, not samples
|
2022-10-31 18:36:28 +00:00 |
|
|
dfef7db421
|
moar debugging
|
2022-10-31 18:26:34 +00:00 |
|
|
172cf9d8ce
|
tweak
|
2022-10-31 18:19:43 +00:00 |
|
|
dbe35ee943
|
loss: comment l2 norm
|
2022-10-31 18:09:03 +00:00 |
|
|
5e60319024
|
fixup
|
2022-10-31 17:56:49 +00:00 |
|
|
b986b069e2
|
debug party time
|
2022-10-31 17:50:29 +00:00 |
|
|
458faa96d2
|
loss: fixup
|
2022-10-31 17:18:21 +00:00 |
|
|
55dc05e8ce
|
contrastive: comment weights that aren't needed
|
2022-10-31 16:26:48 +00:00 |
|
|
33391eaf16
|
train_predict/jsonl: don't argmax
I'm interested inthe raw values
|
2022-10-26 17:21:19 +01:00 |
|
|
74f2cdb900
|
train_predict: .list() → .tolist()
|
2022-10-26 17:12:36 +01:00 |
|
|
4f9d543695
|
train_predict: don't pass model_code
it's redundant
|
2022-10-26 17:11:36 +01:00 |
|
|
1b489518d0
|
segmenter: add LayerStack2Image to custom_objects
|
2022-10-26 17:05:50 +01:00 |
|
|
48ae8a5c20
|
LossContrastive: normalise features as per the paper
|
2022-10-26 16:52:56 +01:00 |
|
|
843cc8dc7b
|
contrastive: rewrite the loss function.
The CLIP paper *does* kinda make sense I think
|
2022-10-26 16:45:45 +01:00 |
|
|
fad1399c2d
|
convnext: whitespace
|
2022-10-26 16:45:20 +01:00 |
|
|
1d872cb962
|
contrastive: fix initial temperature value
It should be 1/0.07, but we had it set to 0.07......
|
2022-10-26 16:45:01 +01:00 |
|
|
f994d449f1
|
Layer2Image: fix
|
2022-10-25 21:32:17 +01:00 |
|
|
6a29105f56
|
model_segmentation: stack not reshape
|
2022-10-25 21:25:15 +01:00 |
|
|
98417a3e06
|
prepare for NCE loss
.....but Tensorflow's implementation looks to be for supervised models :-(
|
2022-10-25 21:15:05 +01:00 |
|
|
bb0679a509
|
model_segmentation: don't softmax twice
|
2022-10-25 21:11:48 +01:00 |
|
|
f2e2ca1484
|
model_contrastive: make water encoder significantly shallower
|
2022-10-24 20:52:31 +01:00 |
|
|
a6b07a49cb
|
count water/nowater pixels in Jupyter Notebook
|
2022-10-24 18:05:34 +01:00 |
|
|
a8b101bdae
|
dataset_predict: add shape_water_desired
|
2022-10-24 18:05:13 +01:00 |
|
|
587c1dfafa
|
train_predict: revamp jsonl handling
|
2022-10-21 16:53:08 +01:00 |
|
|
8195318a42
|
SparseCategoricalAccuracy: losses → metrics
|
2022-10-21 16:51:20 +01:00 |
|
|
612735aaae
|
rename shuffle arg
|
2022-10-21 16:35:45 +01:00 |
|
|
c98d8d05dd
|
segmentation: use the right accuracy
|
2022-10-21 16:17:05 +01:00 |
|
|
bb0258f5cd
|
flip squeeze operator ordering
|
2022-10-21 15:38:57 +01:00 |
|
|
af26964c6a
|
batched_iterator: reset i_item after every time
|
2022-10-21 15:35:43 +01:00 |
|
|
c5b1501dba
|
train-predict fixup
|
2022-10-21 15:27:39 +01:00 |
|
|
42aea7a0cc
|
plt.close() fixup
|
2022-10-21 15:23:54 +01:00 |
|
|
12dad3bc87
|
vis/segmentation: fix titles
|
2022-10-21 15:22:35 +01:00 |
|
|
0cb2de5d06
|
train-preedict: close matplotlib after we've finished
they act like file handles
|
2022-10-21 15:19:31 +01:00 |
|
|
81e53efd9c
|
PNG: create output dir if doesn't exist
|
2022-10-21 15:17:39 +01:00 |
|
|
3f7db6fa78
|
fix embedding confusion
|
2022-10-21 15:15:59 +01:00 |
|
|
847cd97ec4
|
fixup
|
2022-10-21 14:26:58 +01:00 |
|
|
0e814b7e98
|
Contraster → Segmenter
|
2022-10-21 14:25:43 +01:00 |
|
|
1b658a1b7c
|
train-predict: can't destructure array when iterating generator
....it seems to lead to undefined behaviour or something
|
2022-10-20 19:34:04 +01:00 |
|
|
aed2348a95
|
train_predict: fixup
|
2022-10-20 15:42:33 +01:00 |
|
|
cc6679c609
|
batch data; use generator
|
2022-10-20 15:22:29 +01:00 |
|
|
d306853c42
|
use right daataset
|
2022-10-20 15:16:24 +01:00 |
|
|
59cfa4a89a
|
basename paths
|
2022-10-20 15:11:14 +01:00 |
|
|
4d8ae21a45
|
update cli help text
|
2022-10-19 17:31:42 +01:00 |
|
|
200076596b
|
finish train_predict
|
2022-10-19 17:26:40 +01:00 |
|
|
488f78fca5
|
pretrain_predict: default to parallel_reads=0
|
2022-10-19 16:59:45 +01:00 |
|
|
63e909d9fc
|
datasets: add shuffle=True/False to get_filepaths.
This is important because otherwise it SCAMBLES the filenames, which is a disaster for making predictions in the right order....!
|
2022-10-19 16:52:07 +01:00 |
|
|
fe43ddfbf9
|
start implementing driver for train_predict, but not finished yet
|
2022-10-18 19:37:55 +01:00 |
|
|
b3ea189d37
|
segmentation: softmax the output
|
2022-10-13 21:02:57 +01:00 |
|
|
f121bfb981
|
fixup summaryfile
|
2022-10-13 17:54:42 +01:00 |
|
|
5c35c0cee4
|
model_segmentation: document; remove unused args
|
2022-10-13 17:50:16 +01:00 |
|
|
f12e6ab905
|
No need for a CLI arg for feature_dim_in - metadata should contain this
|
2022-10-13 17:37:16 +01:00 |
|
|
e201372252
|
write quick Jupyter notebook to test data
....I'm paranoid
|
2022-10-13 17:27:17 +01:00 |
|
|
ae53130e66
|
layout
|
2022-10-13 14:54:20 +01:00 |
|
|
7933564c66
|
typo
|
2022-10-12 17:33:54 +01:00 |
|
|
dbe4fb0eab
|
train: add slurm job file
|
2022-10-12 17:27:10 +01:00 |
|
|
6423bf6702
|
LayerConvNeXtGamma: avoid adding an EagerTensor to config
Very weird how this is a problem when it wasn't before..
|
2022-10-12 17:12:07 +01:00 |
|
|
32f5200d3b
|
pass model_arch properly
|
2022-10-12 16:50:06 +01:00 |
|
|
5933fb1061
|
fixup
|
2022-10-11 19:23:41 +01:00 |
|
|
c45b90764e
|
segmentation: adds xxtiny, but unsure if it's small enough
|
2022-10-11 19:22:37 +01:00 |
|
|
f4a2c742d9
|
typo
|
2022-10-11 19:19:23 +01:00 |
|
|
11f91a7cf4
|
train: add --arch; default to convnext_i_xtiny
|
2022-10-11 19:18:01 +01:00 |
|
|
5666c5a0d9
|
typo
|
2022-10-10 18:12:51 +01:00 |
|
|
131c0a0a5b
|
pretrain-predict: create dir if not exists
|
2022-10-10 18:00:55 +01:00 |
|