dataset: simplify dataset_predict

This commit is contained in:
Starbeamrainbowlabs 2022-09-14 17:33:17 +01:00
parent 279e27c898
commit fa3165a5b2
Signed by: sbrl
GPG key ID: 1BE5172E637709C2

View file

@ -14,7 +14,7 @@ from .shuffle import shuffle
# TO PARSE:
def parse_item(metadata, shape_water_desired):
def parse_item(metadata, shape_water_desired, dummy_label=True):
water_width_source, water_height_source = metadata["waterdepth"]
water_width_target, water_height_target = shape_water_desired
water_offset_x = math.ceil((water_width_source - water_width_target) / 2)
@ -39,18 +39,21 @@ def parse_item(metadata, shape_water_desired):
print("DEBUG:dataset ITEM rainfall:shape", rainfall.shape, "water:shape", water.shape)
# TODO: Any other additional parsing here, since multiple .map() calls are not optimal
if dummy_label:
return ((rainfall, water), tf.ones(1))
else:
return rainfall, water
return tf.function(parse_item_inner)
def make_dataset(filepaths, metadata, shape_watch_desired=[100,100], compression_type="GZIP", parallel_reads_multiplier=1.5, shuffle_buffer_size=128, batch_size=64):
def make_dataset(filepaths, metadata, shape_watch_desired=[100,100], compression_type="GZIP", parallel_reads_multiplier=1.5, shuffle_buffer_size=128, batch_size=64, dummy_label=True):
if "NO_PREFETCH" in os.environ:
logger.info("disabling data prefetching.")
return tf.data.TFRecordDataset(filepaths,
compression_type=compression_type,
num_parallel_reads=math.ceil(os.cpu_count() * parallel_reads_multiplier)
).shuffle(shuffle_buffer_size) \
.map(parse_item(metadata, shape_water_desired=shape_watch_desired), num_parallel_calls=tf.data.AUTOTUNE) \
.map(parse_item(metadata, shape_water_desired=shape_watch_desired, dummy_label=dummy_label), num_parallel_calls=tf.data.AUTOTUNE) \
.batch(batch_size, drop_remainder=True) \
.prefetch(0 if "NO_PREFETCH" in os.environ else tf.data.AUTOTUNE)
@ -86,7 +89,8 @@ def dataset_predict(dirpath_input, batch_size=64, parallel_reads_multiplier=1.5)
filepaths=filepaths,
metadata=read_metadata(dirpath_input),
batch_size=batch_size,
parallel_reads_multiplier=parallel_reads_multiplier
parallel_reads_multiplier=parallel_reads_multiplier,
dummy_label=False
), filepaths[0:filepaths_count], filepaths_count
if __name__ == "__main__":