mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-12-22 06:05:01 +00:00
Fix lots of ruff linter warnings
This commit is contained in:
parent
0260e626db
commit
f8a1e1b594
19 changed files with 31 additions and 56 deletions
|
@ -6,8 +6,8 @@ import tensorflow as tf
|
|||
|
||||
from ..dataset.batched_iterator import batched_iterator
|
||||
|
||||
from ..io.find_paramsjson import find_paramsjson
|
||||
from ..io.readfile import readfile
|
||||
# from ..io.find_paramsjson import find_paramsjson
|
||||
# from ..io.readfile import readfile
|
||||
from ..io.writefile import writefile
|
||||
|
||||
from .model_rainfallwater_contrastive import model_rainfallwater_contrastive
|
||||
|
@ -16,7 +16,7 @@ from .helpers import summarywriter
|
|||
from .components.LayerContrastiveEncoder import LayerContrastiveEncoder
|
||||
from .components.LayerConvNeXtGamma import LayerConvNeXtGamma
|
||||
from .components.LayerCheeseMultipleOut import LayerCheeseMultipleOut
|
||||
from .helpers.summarywriter import summarywriter
|
||||
|
||||
|
||||
class RainfallWaterContraster(object):
|
||||
def __init__(self, dir_output=None, filepath_checkpoint=None, epochs=50, batch_size=64, **kwargs):
|
||||
|
@ -28,8 +28,8 @@ class RainfallWaterContraster(object):
|
|||
self.batch_size = batch_size
|
||||
|
||||
|
||||
if filepath_checkpoint == None:
|
||||
if self.dir_output == None:
|
||||
if filepath_checkpoint is None:
|
||||
if self.dir_output is None:
|
||||
raise Exception("Error: dir_output was not specified, and since no checkpoint was loaded training mode is activated.")
|
||||
if not os.path.exists(self.dir_output):
|
||||
os.mkdir(self.dir_output)
|
||||
|
|
|
@ -4,10 +4,10 @@ import json
|
|||
from loguru import logger
|
||||
import tensorflow as tf
|
||||
|
||||
from ..dataset.batched_iterator import batched_iterator
|
||||
# from ..dataset.batched_iterator import batched_iterator
|
||||
|
||||
from ..io.find_paramsjson import find_paramsjson
|
||||
from ..io.readfile import readfile
|
||||
# from ..io.find_paramsjson import find_paramsjson
|
||||
# from ..io.readfile import readfile
|
||||
from ..io.writefile import writefile
|
||||
|
||||
from .model_rainfallwater_mono import model_rainfallwater_mono
|
||||
|
@ -16,7 +16,6 @@ from .helpers import summarywriter
|
|||
from .components.LayerConvNeXtGamma import LayerConvNeXtGamma
|
||||
from .components.LayerStack2Image import LayerStack2Image
|
||||
from .components.LossCrossentropy import LossCrossentropy
|
||||
from .helpers.summarywriter import summarywriter
|
||||
|
||||
class RainfallWaterMono(object):
|
||||
def __init__(self, dir_output=None, filepath_checkpoint=None, epochs=50, batch_size=64, **kwargs):
|
||||
|
@ -28,8 +27,8 @@ class RainfallWaterMono(object):
|
|||
self.batch_size = batch_size
|
||||
|
||||
|
||||
if filepath_checkpoint == None:
|
||||
if self.dir_output == None:
|
||||
if filepath_checkpoint is None:
|
||||
if self.dir_output is None:
|
||||
raise Exception("Error: dir_output was not specified, and since no checkpoint was loaded training mode is activated.")
|
||||
if not os.path.exists(self.dir_output):
|
||||
os.mkdir(self.dir_output)
|
||||
|
|
|
@ -4,10 +4,10 @@ import json
|
|||
from loguru import logger
|
||||
import tensorflow as tf
|
||||
|
||||
from ..dataset.batched_iterator import batched_iterator
|
||||
# from ..dataset.batched_iterator import batched_iterator
|
||||
|
||||
from ..io.find_paramsjson import find_paramsjson
|
||||
from ..io.readfile import readfile
|
||||
# from ..io.find_paramsjson import find_paramsjson
|
||||
# from ..io.readfile import readfile
|
||||
from ..io.writefile import writefile
|
||||
|
||||
from .model_rainfallwater_segmentation import model_rainfallwater_segmentation
|
||||
|
@ -15,7 +15,6 @@ from .helpers import make_callbacks
|
|||
from .helpers import summarywriter
|
||||
from .components.LayerConvNeXtGamma import LayerConvNeXtGamma
|
||||
from .components.LayerStack2Image import LayerStack2Image
|
||||
from .helpers.summarywriter import summarywriter
|
||||
|
||||
class RainfallWaterSegmenter(object):
|
||||
def __init__(self, dir_output=None, filepath_checkpoint=None, epochs=50, batch_size=64, **kwargs):
|
||||
|
@ -27,8 +26,8 @@ class RainfallWaterSegmenter(object):
|
|||
self.batch_size = batch_size
|
||||
|
||||
|
||||
if filepath_checkpoint == None:
|
||||
if self.dir_output == None:
|
||||
if filepath_checkpoint is None:
|
||||
if self.dir_output is None:
|
||||
raise Exception("Error: dir_output was not specified, and since no checkpoint was loaded training mode is activated.")
|
||||
if not os.path.exists(self.dir_output):
|
||||
os.mkdir(self.dir_output)
|
||||
|
|
|
@ -27,7 +27,7 @@ class CallbackExtraValidation(tf.keras.callbacks.Callback):
|
|||
self.verbose = verbose
|
||||
|
||||
def on_epoch_end(self, epoch, logs=None):
|
||||
if logs == None:
|
||||
if logs is None:
|
||||
logger.warning(
|
||||
"[CallbackExtraValidation] logs is None! Can't do anything here.")
|
||||
return False
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
def dice_coef(y_true, y_pred, smooth=100):
|
||||
|
@ -27,7 +25,7 @@ def dice_coef_loss(y_true, y_pred, **kwargs):
|
|||
y_true (Tensor): The ground truth
|
||||
y_pred (Tensor): The predicted output.
|
||||
Returns:
|
||||
Tensor: The Dice coefficient, but as a loss value that decreases instead fo increases as the model learns.
|
||||
Tensor: The Dice coefficient, but as a loss value that decreases instead of increases as the model learns.
|
||||
"""
|
||||
return 1 - dice_coef(y_true, y_pred, **kwargs)
|
||||
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
|
|
|
@ -1,6 +1,3 @@
|
|||
import math
|
||||
|
||||
from curses import meta
|
||||
from loguru import logger
|
||||
import tensorflow as tf
|
||||
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
import math
|
||||
|
||||
from loguru import logger
|
||||
import tensorflow as tf
|
||||
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
import math
|
||||
|
||||
from loguru import logger
|
||||
import tensorflow as tf
|
||||
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
import os
|
||||
import math
|
||||
import json
|
||||
|
||||
from loguru import logger
|
||||
|
||||
|
@ -8,7 +7,6 @@ import tensorflow as tf
|
|||
|
||||
from lib.dataset.read_metadata import read_metadata
|
||||
|
||||
from ..io.readfile import readfile
|
||||
from .primitives.shuffle import shuffle
|
||||
|
||||
|
||||
|
@ -63,7 +61,7 @@ def make_dataset(filepaths, metadata, shape_water_desired=[100,100], compression
|
|||
dataset = dataset.shuffle(shuffle_buffer_size)
|
||||
dataset = dataset.map(parse_item(metadata, shape_water_desired=shape_water_desired, dummy_label=dummy_label), num_parallel_calls=tf.data.AUTOTUNE)
|
||||
|
||||
if batch_size != None:
|
||||
if batch_size is not None:
|
||||
dataset = dataset.batch(batch_size, drop_remainder=True)
|
||||
if prefetch:
|
||||
dataset = dataset.prefetch(0 if "NO_PREFETCH" in os.environ else tf.data.AUTOTUNE)
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
import os
|
||||
import math
|
||||
import json
|
||||
|
||||
from loguru import logger
|
||||
|
||||
|
@ -8,9 +7,9 @@ import tensorflow as tf
|
|||
|
||||
from lib.dataset.read_metadata import read_metadata
|
||||
|
||||
from ..io.readfile import readfile
|
||||
from .primitives.shuffle import shuffle
|
||||
from .parse_heightmap import parse_heightmap
|
||||
from .dataset_mono import dataset_mono
|
||||
|
||||
|
||||
|
||||
|
@ -125,7 +124,7 @@ def make_dataset(filepaths, compression_type="GZIP", parallel_reads_multiplier=3
|
|||
# defaults = (33*33 + 1) * 2**16 * 8 = about 2.219GiB
|
||||
dataset = dataset.shuffle(shuffle_buffer_size)
|
||||
|
||||
if batch_size != None:
|
||||
if batch_size is not None:
|
||||
dataset = dataset.batch(batch_size, drop_remainder=True)
|
||||
if prefetch:
|
||||
dataset = dataset.prefetch(0 if "NO_PREFETCH" in os.environ else tf.data.AUTOTUNE)
|
||||
|
|
|
@ -1,12 +1,10 @@
|
|||
import os
|
||||
import math
|
||||
import json
|
||||
|
||||
from loguru import logger
|
||||
import tensorflow as tf
|
||||
|
||||
from lib.dataset.read_metadata import read_metadata
|
||||
from ..io.readfile import readfile
|
||||
from .primitives.shuffle import shuffle
|
||||
|
||||
|
||||
|
@ -62,7 +60,7 @@ def make_dataset(filepaths, metadata, shape_water_desired=[100,100], water_thres
|
|||
dataset = dataset.shuffle(shuffle_buffer_size)
|
||||
dataset = dataset.map(parse_item(metadata, shape_water_desired=shape_water_desired, water_threshold=water_threshold), num_parallel_calls=tf.data.AUTOTUNE)
|
||||
|
||||
if batch_size != None:
|
||||
if batch_size is not None:
|
||||
dataset = dataset.batch(batch_size, drop_remainder=True)
|
||||
if prefetch:
|
||||
dataset = dataset.prefetch(0 if "NO_PREFETCH" in os.environ else tf.data.AUTOTUNE)
|
||||
|
|
|
@ -51,7 +51,7 @@ def read(name, type_class, default=SYM_RAISE_EXCEPTION):
|
|||
"""
|
||||
|
||||
if name not in os.environ:
|
||||
if type_class == bool and default == SYM_RAISE_EXCEPTION:
|
||||
if type_class is bool and default == SYM_RAISE_EXCEPTION:
|
||||
default = False
|
||||
if default == SYM_RAISE_EXCEPTION:
|
||||
raise Exception(f"Error: Environment variable {name} does not exist")
|
||||
|
@ -59,8 +59,8 @@ def read(name, type_class, default=SYM_RAISE_EXCEPTION):
|
|||
return default
|
||||
|
||||
result = os.environ[name]
|
||||
if type_class == bool:
|
||||
result = False if default == True else True
|
||||
if type_class is bool:
|
||||
result = False if default is True else True
|
||||
else:
|
||||
result = type_class(result)
|
||||
|
||||
|
@ -99,7 +99,7 @@ def print_all(table=True):
|
|||
for env in envs_read:
|
||||
key, value, is_default = env
|
||||
prefix = "* " if is_default else ""
|
||||
print(f"> {key.ljust(width_name)} {value}")
|
||||
print(f"> {prefix}{key.ljust(width_name)} {value}")
|
||||
print(f"Total {len(envs_read)} values")
|
||||
print("===================================")
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
import os
|
||||
# import os
|
||||
|
||||
import umap
|
||||
import umap.plot
|
||||
import numpy as np
|
||||
# import numpy as np
|
||||
import matplotlib.pylab as plt
|
||||
import pandas
|
||||
|
||||
|
@ -24,7 +24,7 @@ def vis_embeddings(filepath_output, features):
|
|||
umap.plot.points(dimreducer,
|
||||
ax=axes["A"]
|
||||
)
|
||||
axes["A"].set_title(f"UMAP Dimensionality Reduction", fontsize=20)
|
||||
axes["A"].set_title("UMAP Dimensionality Reduction", fontsize=20)
|
||||
|
||||
# 2: Parallel coordinates
|
||||
dataframe = pandas.DataFrame(features)
|
||||
|
@ -39,7 +39,7 @@ def vis_embeddings(filepath_output, features):
|
|||
sort_labels=True
|
||||
)
|
||||
|
||||
axes["B"].set_title(f"Parallel coordinates plot", fontsize=20)
|
||||
axes["B"].set_title("Parallel coordinates plot", fontsize=20)
|
||||
|
||||
plt.suptitle(f"RainfallContrastive embeddings | rainfall | E2 ConvNeXt | {len(features)} items", fontsize=28, weight="bold")
|
||||
plt.savefig(filepath_output)
|
||||
|
|
|
@ -17,11 +17,11 @@ def segmentation_plot(water_actual, water_predict, model_code, filepath_output):
|
|||
figure, axes = plt.subplot_mosaic("AB", figsize=(width*px, height*px))
|
||||
|
||||
axes["A"].imshow(water_actual)
|
||||
axes["A"].set_title(f"Actual", fontsize=20)
|
||||
axes["A"].set_title("Actual", fontsize=20)
|
||||
|
||||
|
||||
axes["B"].imshow(water_predict)
|
||||
axes["B"].set_title(f"Predicted", fontsize=20)
|
||||
axes["B"].set_title("Predicted", fontsize=20)
|
||||
|
||||
|
||||
plt.suptitle(f"Rainfall → Water depth prediction | {model_code}", fontsize=28, weight="bold")
|
||||
|
|
Loading…
Reference in a new issue