mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-26 02:43:02 +00:00
DeepLabV3+: start working on version for rainfall radar, but it's not finished yet
This commit is contained in:
parent
15a3150127
commit
ef5071b569
2 changed files with 252 additions and 1 deletions
249
aimodel/src/deeplabv3_plus_test_rainfall.py
Executable file
249
aimodel/src/deeplabv3_plus_test_rainfall.py
Executable file
|
@ -0,0 +1,249 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# @source https://keras.io/examples/vision/deeplabv3_plus/
|
||||||
|
# Required dataset: https://drive.google.com/uc?id=1B9A9UCJYMwTL4oBEo4RZfbMZMaZhKJaz [instance-level-human-parsing.zip]
|
||||||
|
|
||||||
|
from datetime import datetime
|
||||||
|
from loguru import logger
|
||||||
|
from lib.ai.helpers.summarywriter import summarywriter
|
||||||
|
|
||||||
|
import os
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
from glob import glob
|
||||||
|
from scipy.io import loadmat
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
IMAGE_SIZE = 128 # was 512; 128 is the highest power of 2 that fits the data
|
||||||
|
BATCH_SIZE = int(os.environ["DL_BATCH_SIZE"]) if "DL_BATCH_SIZE" in os.environ else 64
|
||||||
|
NUM_CLASSES = 2
|
||||||
|
DIR_DATA_TF = os.environ["DL_DATA_DIR_TF"]
|
||||||
|
PATH_HEIGHTMAP = os.environ["DL_PATH_HEIGHTMAP"]
|
||||||
|
NUM_BATCHES = int(os.environ["DL_NUM_BATCHES"] if "DL_NUM_BATCHES" in os.environ else "0")
|
||||||
|
|
||||||
|
DIR_OUTPUT=f"output/{datetime.utcnow().date().isoformat()}_deeplabv3plus_rainfall_TEST"
|
||||||
|
|
||||||
|
if not os.path.exists(DIR_OUTPUT):
|
||||||
|
os.makedirs(DIR_OUTPUT)
|
||||||
|
|
||||||
|
logger.info("DeepLabv3+ rainfall radar TEST")
|
||||||
|
logger.info(f"> NUM_BATCHES {NUM_BATCHES}")
|
||||||
|
logger.info(f"> BATCH_SIZE {BATCH_SIZE}")
|
||||||
|
logger.info(f"> DIR_DATA_TF {DIR_DATA_TF}")
|
||||||
|
logger.info(f"> DL_PATH_HEIGHTMAP {DL_PATH_HEIGHTMAP}")
|
||||||
|
logger.info(f"> DIR_OUTPUT {DIR_OUTPUT}")
|
||||||
|
|
||||||
|
|
||||||
|
dataset_train, dataset_validate = dataset_mono(
|
||||||
|
dirpath_input=DIR_DATA,
|
||||||
|
batch_size=BATCH_SIZE,
|
||||||
|
water_threshold=0.1,
|
||||||
|
rainfall_scale_up=2, # done BEFORE cropping to the below size
|
||||||
|
output_size=IMAGE_SIZE,
|
||||||
|
input_size="same",
|
||||||
|
filepath_heightmap=PATH_HEIGHTMAP,
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info("Train Dataset:", dataset_train)
|
||||||
|
logger.info("Validation Dataset:", dataset_validate)
|
||||||
|
|
||||||
|
|
||||||
|
# ███ ███ ██████ ██████ ███████ ██
|
||||||
|
# ████ ████ ██ ██ ██ ██ ██ ██
|
||||||
|
# ██ ████ ██ ██ ██ ██ ██ █████ ██
|
||||||
|
# ██ ██ ██ ██ ██ ██ ██ ██ ██
|
||||||
|
# ██ ██ ██████ ██████ ███████ ███████
|
||||||
|
|
||||||
|
def convolution_block(
|
||||||
|
block_input,
|
||||||
|
num_filters=256,
|
||||||
|
kernel_size=3,
|
||||||
|
dilation_rate=1,
|
||||||
|
padding="same",
|
||||||
|
use_bias=False,
|
||||||
|
):
|
||||||
|
x = tf.keras.layers.Conv2D(
|
||||||
|
num_filters,
|
||||||
|
kernel_size=kernel_size,
|
||||||
|
dilation_rate=dilation_rate,
|
||||||
|
padding="same",
|
||||||
|
use_bias=use_bias,
|
||||||
|
kernel_initializer=tf.keras.initializers.HeNormal(),
|
||||||
|
)(block_input)
|
||||||
|
x = tf.keras.layers.BatchNormalization()(x)
|
||||||
|
return tf.nn.relu(x)
|
||||||
|
|
||||||
|
|
||||||
|
def DilatedSpatialPyramidPooling(dspp_input):
|
||||||
|
dims = dspp_input.shape
|
||||||
|
x = tf.keras.layers.AveragePooling2D(pool_size=(dims[-3], dims[-2]))(dspp_input)
|
||||||
|
x = convolution_block(x, kernel_size=1, use_bias=True)
|
||||||
|
out_pool = tf.keras.layers.UpSampling2D(
|
||||||
|
size=(dims[-3] // x.shape[1], dims[-2] // x.shape[2]), interpolation="bilinear",
|
||||||
|
)(x)
|
||||||
|
|
||||||
|
out_1 = convolution_block(dspp_input, kernel_size=1, dilation_rate=1)
|
||||||
|
out_6 = convolution_block(dspp_input, kernel_size=3, dilation_rate=6)
|
||||||
|
out_12 = convolution_block(dspp_input, kernel_size=3, dilation_rate=12)
|
||||||
|
out_18 = convolution_block(dspp_input, kernel_size=3, dilation_rate=18)
|
||||||
|
|
||||||
|
x = tf.keras.layers.Concatenate(axis=-1)([out_pool, out_1, out_6, out_12, out_18])
|
||||||
|
output = convolution_block(x, kernel_size=1)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def DeeplabV3Plus(image_size, num_classes, num_channels=3):
|
||||||
|
model_input = tf.keras.Input(shape=(image_size, image_size, num_channels))
|
||||||
|
resnet50 = tf.keras.applications.ResNet50(
|
||||||
|
weights="imagenet", include_top=False, input_tensor=model_input
|
||||||
|
)
|
||||||
|
x = resnet50.get_layer("conv4_block6_2_relu").output
|
||||||
|
x = DilatedSpatialPyramidPooling(x)
|
||||||
|
|
||||||
|
input_a = tf.keras.layers.UpSampling2D(
|
||||||
|
size=(image_size // 4 // x.shape[1], image_size // 4 // x.shape[2]),
|
||||||
|
interpolation="bilinear",
|
||||||
|
)(x)
|
||||||
|
input_b = resnet50.get_layer("conv2_block3_2_relu").output
|
||||||
|
input_b = convolution_block(input_b, num_filters=48, kernel_size=1)
|
||||||
|
|
||||||
|
x = tf.keras.layers.Concatenate(axis=-1)([input_a, input_b])
|
||||||
|
x = convolution_block(x)
|
||||||
|
x = convolution_block(x)
|
||||||
|
x = tf.keras.layers.UpSampling2D(
|
||||||
|
size=(image_size // x.shape[1], image_size // x.shape[2]),
|
||||||
|
interpolation="bilinear",
|
||||||
|
)(x)
|
||||||
|
model_output = tf.keras.layers.Conv2D(num_classes, kernel_size=(1, 1), padding="same")(x)
|
||||||
|
return tf.keras.Model(inputs=model_input, outputs=model_output)
|
||||||
|
|
||||||
|
|
||||||
|
model = DeeplabV3Plus(image_size=IMAGE_SIZE, num_classes=NUM_CLASSES)
|
||||||
|
summarywriter(model, os.path.join(DIR_OUTPUT, "summary.txt"))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# ████████ ██████ █████ ██ ███ ██ ██ ███ ██ ██████
|
||||||
|
# ██ ██ ██ ██ ██ ██ ████ ██ ██ ████ ██ ██
|
||||||
|
# ██ ██████ ███████ ██ ██ ██ ██ ██ ██ ██ ██ ██ ███
|
||||||
|
# ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
|
||||||
|
# ██ ██ ██ ██ ██ ██ ██ ████ ██ ██ ████ ██████
|
||||||
|
|
||||||
|
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
||||||
|
model.compile(
|
||||||
|
optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
|
||||||
|
loss=loss,
|
||||||
|
metrics=["accuracy"],
|
||||||
|
)
|
||||||
|
logger.info(">>> Beginning training")
|
||||||
|
history = model.fit(train_dataset,
|
||||||
|
validation_data=val_dataset,
|
||||||
|
epochs=25,
|
||||||
|
callbacks=[
|
||||||
|
tf.keras.callbacks.CSVLogger(
|
||||||
|
filename=os.path.join(DIR_OUTPUT, "metrics.tsv"),
|
||||||
|
separator="\t"
|
||||||
|
)
|
||||||
|
],
|
||||||
|
)
|
||||||
|
logger.info(">>> Training complete")
|
||||||
|
logger.info(">>> Plotting graphs")
|
||||||
|
|
||||||
|
plt.plot(history.history["loss"])
|
||||||
|
plt.title("Training Loss")
|
||||||
|
plt.ylabel("loss")
|
||||||
|
plt.xlabel("epoch")
|
||||||
|
plt.savefig(os.path.join(DIR_OUTPUT, "loss.png"))
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
plt.plot(history.history["accuracy"])
|
||||||
|
plt.title("Training Accuracy")
|
||||||
|
plt.ylabel("accuracy")
|
||||||
|
plt.xlabel("epoch")
|
||||||
|
plt.savefig(os.path.join(DIR_OUTPUT, "acc.png"))
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
plt.plot(history.history["val_loss"])
|
||||||
|
plt.title("Validation Loss")
|
||||||
|
plt.ylabel("val_loss")
|
||||||
|
plt.xlabel("epoch")
|
||||||
|
plt.savefig(os.path.join(DIR_OUTPUT, "val_loss.png"))
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
plt.plot(history.history["val_accuracy"])
|
||||||
|
plt.title("Validation Accuracy")
|
||||||
|
plt.ylabel("val_accuracy")
|
||||||
|
plt.xlabel("epoch")
|
||||||
|
plt.savefig(os.path.join(DIR_OUTPUT, "val_acc.png"))
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# ██ ███ ██ ███████ ███████ ██████ ███████ ███ ██ ██████ ███████
|
||||||
|
# ██ ████ ██ ██ ██ ██ ██ ██ ████ ██ ██ ██
|
||||||
|
# ██ ██ ██ ██ █████ █████ ██████ █████ ██ ██ ██ ██ █████
|
||||||
|
# ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
|
||||||
|
# ██ ██ ████ ██ ███████ ██ ██ ███████ ██ ████ ██████ ███████
|
||||||
|
|
||||||
|
# Loading the Colormap
|
||||||
|
colormap = loadmat(
|
||||||
|
os.path.join(os.path.dirname(DATA_DIR), "human_colormap.mat")
|
||||||
|
)["colormap"]
|
||||||
|
colormap = colormap * 100
|
||||||
|
colormap = colormap.astype(np.uint8)
|
||||||
|
|
||||||
|
|
||||||
|
def infer(model, image_tensor):
|
||||||
|
predictions = model.predict(np.expand_dims((image_tensor), axis=0))
|
||||||
|
predictions = np.squeeze(predictions)
|
||||||
|
predictions = np.argmax(predictions, axis=2)
|
||||||
|
return predictions
|
||||||
|
|
||||||
|
|
||||||
|
def decode_segmentation_masks(mask, colormap, n_classes):
|
||||||
|
r = np.zeros_like(mask).astype(np.uint8)
|
||||||
|
g = np.zeros_like(mask).astype(np.uint8)
|
||||||
|
b = np.zeros_like(mask).astype(np.uint8)
|
||||||
|
for l in range(0, n_classes):
|
||||||
|
idx = mask == l
|
||||||
|
r[idx] = colormap[l, 0]
|
||||||
|
g[idx] = colormap[l, 1]
|
||||||
|
b[idx] = colormap[l, 2]
|
||||||
|
rgb = np.stack([r, g, b], axis=2)
|
||||||
|
return rgb
|
||||||
|
|
||||||
|
|
||||||
|
def get_overlay(image, colored_mask):
|
||||||
|
image = tf.keras.preprocessing.image.array_to_img(image)
|
||||||
|
image = np.array(image).astype(np.uint8)
|
||||||
|
overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0)
|
||||||
|
return overlay
|
||||||
|
|
||||||
|
|
||||||
|
def plot_samples_matplotlib(filepath, display_list, figsize=(5, 3)):
|
||||||
|
_, axes = plt.subplots(nrows=1, ncols=len(display_list), figsize=figsize)
|
||||||
|
for i in range(len(display_list)):
|
||||||
|
if display_list[i].shape[-1] == 3:
|
||||||
|
axes[i].imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
|
||||||
|
else:
|
||||||
|
axes[i].imshow(display_list[i])
|
||||||
|
plt.savefig(filepath)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_predictions(filepath, images_list, colormap, model):
|
||||||
|
for image_file in images_list:
|
||||||
|
image_tensor = read_image(image_file)
|
||||||
|
prediction_mask = infer(image_tensor=image_tensor, model=model)
|
||||||
|
prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 20)
|
||||||
|
overlay = get_overlay(image_tensor, prediction_colormap)
|
||||||
|
plot_samples_matplotlib(
|
||||||
|
filepath,
|
||||||
|
[image_tensor, overlay, prediction_colormap],
|
||||||
|
figsize=(18, 14)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
plot_predictions(os.path.join(DIR_OUTPUT, "predict_train.png"), train_images[:4], colormap, model=model)
|
||||||
|
plot_predictions(os.path.join(DIR_OUTPUT, "predict_validate.png"), val_images[:4], colormap, model=model)
|
|
@ -15,7 +15,7 @@ from .parse_heightmap import parse_heightmap
|
||||||
|
|
||||||
|
|
||||||
# TO PARSE:
|
# TO PARSE:
|
||||||
def parse_item(metadata, output_size=100, input_size="same", water_threshold=0.1, water_bins=2, heightmap=None):
|
def parse_item(metadata, output_size=100, input_size="same", water_threshold=0.1, water_bins=2, heightmap=None, rainfall_scale_up=1):
|
||||||
if input_size == "same":
|
if input_size == "same":
|
||||||
input_size = output_size # This is almost always the case with e.g. the DeepLabV3+ model
|
input_size = output_size # This is almost always the case with e.g. the DeepLabV3+ model
|
||||||
|
|
||||||
|
@ -61,6 +61,8 @@ def parse_item(metadata, output_size=100, input_size="same", water_threshold=0.1
|
||||||
rainfall = tf.transpose(rainfall, [2, 1, 0])
|
rainfall = tf.transpose(rainfall, [2, 1, 0])
|
||||||
if heightmap is not None:
|
if heightmap is not None:
|
||||||
rainfall = tf.concat([rainfall, heightmap], axis=-1)
|
rainfall = tf.concat([rainfall, heightmap], axis=-1)
|
||||||
|
if rainfall_scale_up > 1:
|
||||||
|
rainfall = tf.repeat(tf.repeat(rainfall, rainfall_scale_up, axis=0), rainfall_scale_up, axis=1)
|
||||||
if input_size is not None:
|
if input_size is not None:
|
||||||
rainfall = tf.image.crop_to_bounding_box(rainfall,
|
rainfall = tf.image.crop_to_bounding_box(rainfall,
|
||||||
offset_width=rainfall_offset_x,
|
offset_width=rainfall_offset_x,
|
||||||
|
|
Loading…
Reference in a new issue