mirror of
https://github.com/sbrl/research-rainfallradar
synced 2025-01-10 14:04:56 +00:00
dlr: set steps_per_execution to 16 by default
This commit is contained in:
parent
e2e6a56b40
commit
dddc08c663
2 changed files with 4 additions and 1 deletions
|
@ -42,6 +42,7 @@ show_help() {
|
|||
echo -e " PATH_CHECKPOINT The path to a checkcpoint to load. If specified, a model will be loaded instead of being trained." >&2;
|
||||
echo -e " LEARNING_RATE The learning rate to use. Default: 0.001." >&2;
|
||||
echo -e " UPSAMPLE How much to upsample by at the beginning of the model. A value of disables upscaling. Default: 2." >&2;
|
||||
echo -e " STEPS_PER_EXECUTION How much to upsample by at the beginning of the model. A value of disables upscaling. Default: 2." >&2;
|
||||
echo -e " PREDICT_COUNT The number of items from the (SCRAMBLED) dataset to make a prediction for." >&2;
|
||||
echo -e " POSTFIX Postfix to append to the output dir (auto calculated)." >&2;
|
||||
echo -e " ARGS Optional. Any additional arguments to pass to the python program." >&2;
|
||||
|
@ -72,7 +73,7 @@ echo -e ">>> DIR_OUTPUT: ${DIR_OUTPUT}";
|
|||
echo -e ">>> Additional args: ${ARGS}";
|
||||
|
||||
export PATH=$HOME/software/bin:$PATH;
|
||||
export IMAGE_SIZE BATCH_SIZE DIR_RAINFALLWATER PATH_HEIGHTMAP PATH_COLOURMAP STEPS_PER_EPOCH DIR_OUTPUT PATH_CHECKPOINT EPOCHS PREDICT_COUNT NO_REMOVE_ISOLATED_PIXELS LOSS LEARNING_RATE DICE_LOG_COSH WATER_THRESHOLD;
|
||||
export IMAGE_SIZE BATCH_SIZE DIR_RAINFALLWATER PATH_HEIGHTMAP PATH_COLOURMAP STEPS_PER_EPOCH DIR_OUTPUT PATH_CHECKPOINT EPOCHS PREDICT_COUNT NO_REMOVE_ISOLATED_PIXELS LOSS LEARNING_RATE DICE_LOG_COSH WATER_THRESHOLD UPSAMPLE STEPS_PER_EXECUTION;
|
||||
|
||||
echo ">>> Installing requirements";
|
||||
conda run -n py38 pip install -q -r requirements.txt;
|
||||
|
|
|
@ -52,6 +52,7 @@ LEARNING_RATE = float(os.environ["LEARNING_RATE"]) if "LEARNING_RATE" in os.envi
|
|||
WATER_THRESHOLD = float(os.environ["WATER_THRESHOLD"]) if "WATER_THRESHOLD" in os.environ else 0.1
|
||||
UPSAMPLE = int(os.environ["UPSAMPLE"]) if "UPSAMPLE" in os.environ else 2
|
||||
|
||||
STEPS_PER_EXECUTION = int(os.environ["STEPS_PER_EXECUTION"]) if "STEPS_PER_EXECUTION" in os.environ else 16
|
||||
DIR_OUTPUT=os.environ["DIR_OUTPUT"] if "DIR_OUTPUT" in os.environ else f"output/{datetime.utcnow().date().isoformat()}_deeplabv3plus_rainfall_TEST"
|
||||
|
||||
PATH_CHECKPOINT = os.environ["PATH_CHECKPOINT"] if "PATH_CHECKPOINT" in os.environ else None
|
||||
|
@ -227,6 +228,7 @@ if PATH_CHECKPOINT is None:
|
|||
specificity # How many true negatives were accurately predicted?
|
||||
# TODO: Add IoU, F1, Precision, Recall, here.
|
||||
],
|
||||
steps_per_execution=STEPS_PER_EXECUTION
|
||||
)
|
||||
logger.info(">>> Beginning training")
|
||||
history = model.fit(dataset_train,
|
||||
|
|
Loading…
Reference in a new issue