mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-21 17:03:00 +00:00
dlr eo: cheese it by upsampling and then downsampling again
This commit is contained in:
parent
96b94ec55b
commit
9f1cee2927
2 changed files with 9 additions and 8 deletions
|
@ -108,28 +108,29 @@ if PATH_CHECKPOINT is None:
|
|||
out_pool = tf.keras.layers.UpSampling2D(
|
||||
size=(dims[-3] // x.shape[1], dims[-2] // x.shape[2]), interpolation="bilinear",
|
||||
)(x)
|
||||
|
||||
|
||||
out_1 = convolution_block(dspp_input, kernel_size=1, dilation_rate=1)
|
||||
out_6 = convolution_block(dspp_input, kernel_size=3, dilation_rate=6)
|
||||
out_12 = convolution_block(dspp_input, kernel_size=3, dilation_rate=12)
|
||||
out_18 = convolution_block(dspp_input, kernel_size=3, dilation_rate=18)
|
||||
|
||||
|
||||
x = tf.keras.layers.Concatenate(axis=-1)([out_pool, out_1, out_6, out_12, out_18])
|
||||
output = convolution_block(x, kernel_size=1)
|
||||
return output
|
||||
|
||||
|
||||
|
||||
|
||||
def DeeplabV3Plus(image_size, num_classes, num_channels=3):
|
||||
model_input = tf.keras.Input(shape=(image_size, image_size, num_channels))
|
||||
x = tf.keras.layers.UpSampling2D(size=2)(model_input)
|
||||
resnet50 = tf.keras.applications.ResNet50(
|
||||
weights="imagenet" if num_channels == 3 else None,
|
||||
include_top=False, input_tensor=model_input
|
||||
include_top=False, input_tensor=x
|
||||
)
|
||||
x = resnet50.get_layer("conv4_block6_2_relu").output
|
||||
x = DilatedSpatialPyramidPooling(x)
|
||||
|
||||
input_a = tf.keras.layers.UpSampling2D(
|
||||
size=(image_size // 4 // x.shape[1], image_size // 4 // x.shape[2]),
|
||||
size=(image_size // 4 // x.shape[1], image_size // 4 // x.shape[2]), # <--- UPSAMPLE after pyramid
|
||||
interpolation="bilinear",
|
||||
)(x)
|
||||
input_b = resnet50.get_layer("conv2_block3_2_relu").output
|
||||
|
@ -139,7 +140,7 @@ if PATH_CHECKPOINT is None:
|
|||
x = convolution_block(x)
|
||||
x = convolution_block(x)
|
||||
x = tf.keras.layers.UpSampling2D(
|
||||
size=(image_size // x.shape[1], image_size // x.shape[2]),
|
||||
size=(image_size // x.shape[1], image_size // x.shape[2]), # <--- UPSAMPLE at end
|
||||
interpolation="bilinear",
|
||||
)(x)
|
||||
model_output = tf.keras.layers.Conv2D(num_classes, kernel_size=(1, 1), padding="same")(x)
|
||||
|
|
|
@ -94,7 +94,7 @@ def parse_item(metadata, output_size=100, input_size="same", water_threshold=0.1
|
|||
# ONE-HOT [LOSS cross entropy]
|
||||
# water = tf.cast(tf.math.greater_equal(water, water_threshold), dtype=tf.int32)
|
||||
# water = tf.one_hot(water, water_bins, axis=-1, dtype=tf.int32)
|
||||
# SPARSE [LOSS dice]
|
||||
# SPARSE [LOSS dice / sparse cross entropy]
|
||||
water = tf.cast(tf.math.greater_equal(water, water_threshold), dtype=tf.float32)
|
||||
if do_remove_isolated_pixels:
|
||||
water = remove_isolated_pixels(water)
|
||||
|
|
Loading…
Reference in a new issue