mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-22 01:12:59 +00:00
TEST SCRIPT: deeplabv3
ref https://keras.io/examples/vision/deeplabv3_plus/ dataset ref https://drive.google.com/uc?id=1B9A9UCJYMwTL4oBEo4RZfbMZMaZhKJaz (the code is *terrible* spaghetti....!)
This commit is contained in:
parent
4e4d42a281
commit
8866960017
1 changed files with 261 additions and 0 deletions
261
aimodel/src/deeplabv3_plus_test.py
Normal file
261
aimodel/src/deeplabv3_plus_test.py
Normal file
|
@ -0,0 +1,261 @@
|
|||
# @source https://keras.io/examples/vision/deeplabv3_plus/
|
||||
# Required dataset: https://drive.google.com/uc?id=1B9A9UCJYMwTL4oBEo4RZfbMZMaZhKJaz [instance-level-human-parsing.zip]
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
from glob import glob
|
||||
from scipy.io import loadmat
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
IMAGE_SIZE = 512
|
||||
BATCH_SIZE = 4
|
||||
NUM_CLASSES = 20
|
||||
DATA_DIR = "./instance-level_human_parsing/instance-level_human_parsing/Training"
|
||||
NUM_TRAIN_IMAGES = 1000
|
||||
NUM_VAL_IMAGES = 50
|
||||
|
||||
DIR_OUTPUT=f"output/{datetime.utcnow().date().isoformat()}_deeplabv3plus_TEST"
|
||||
|
||||
os.makedirs(DIR_OUTPUT)
|
||||
|
||||
train_images = sorted(glob(os.path.join(DATA_DIR, "Images/*")))[:NUM_TRAIN_IMAGES]
|
||||
train_masks = sorted(glob(os.path.join(DATA_DIR, "Category_ids/*")))[:NUM_TRAIN_IMAGES]
|
||||
val_images = sorted(glob(os.path.join(DATA_DIR, "Images/*")))[
|
||||
NUM_TRAIN_IMAGES : NUM_VAL_IMAGES + NUM_TRAIN_IMAGES
|
||||
]
|
||||
val_masks = sorted(glob(os.path.join(DATA_DIR, "Category_ids/*")))[
|
||||
NUM_TRAIN_IMAGES : NUM_VAL_IMAGES + NUM_TRAIN_IMAGES
|
||||
]
|
||||
|
||||
|
||||
def read_image(image_path, mask=False):
|
||||
image = tf.io.read_file(image_path)
|
||||
if mask:
|
||||
image = tf.image.decode_png(image, channels=1)
|
||||
image.set_shape([None, None, 1])
|
||||
image = tf.image.resize(images=image, size=[IMAGE_SIZE, IMAGE_SIZE])
|
||||
else:
|
||||
image = tf.image.decode_png(image, channels=3)
|
||||
image.set_shape([None, None, 3])
|
||||
image = tf.image.resize(images=image, size=[IMAGE_SIZE, IMAGE_SIZE])
|
||||
image = image / 127.5 - 1
|
||||
return image
|
||||
|
||||
|
||||
def load_data(image_list, mask_list):
|
||||
image = read_image(image_list)
|
||||
mask = read_image(mask_list, mask=True)
|
||||
return image, mask
|
||||
|
||||
|
||||
def data_generator(image_list, mask_list):
|
||||
dataset = tf.data.Dataset.from_tensor_slices((image_list, mask_list))
|
||||
dataset = dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE)
|
||||
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
|
||||
return dataset
|
||||
|
||||
|
||||
train_dataset = data_generator(train_images, train_masks)
|
||||
val_dataset = data_generator(val_images, val_masks)
|
||||
|
||||
print("Train Dataset:", train_dataset)
|
||||
print("Val Dataset:", val_dataset)
|
||||
|
||||
|
||||
# ███ ███ ██████ ██████ ███████ ██
|
||||
# ████ ████ ██ ██ ██ ██ ██ ██
|
||||
# ██ ████ ██ ██ ██ ██ ██ █████ ██
|
||||
# ██ ██ ██ ██ ██ ██ ██ ██ ██
|
||||
# ██ ██ ██████ ██████ ███████ ███████
|
||||
|
||||
def convolution_block(
|
||||
block_input,
|
||||
num_filters=256,
|
||||
kernel_size=3,
|
||||
dilation_rate=1,
|
||||
padding="same",
|
||||
use_bias=False,
|
||||
):
|
||||
x = layers.Conv2D(
|
||||
num_filters,
|
||||
kernel_size=kernel_size,
|
||||
dilation_rate=dilation_rate,
|
||||
padding="same",
|
||||
use_bias=use_bias,
|
||||
kernel_initializer=keras.initializers.HeNormal(),
|
||||
)(block_input)
|
||||
x = layers.BatchNormalization()(x)
|
||||
return tf.nn.relu(x)
|
||||
|
||||
|
||||
def DilatedSpatialPyramidPooling(dspp_input):
|
||||
dims = dspp_input.shape
|
||||
x = layers.AveragePooling2D(pool_size=(dims[-3], dims[-2]))(dspp_input)
|
||||
x = convolution_block(x, kernel_size=1, use_bias=True)
|
||||
out_pool = layers.UpSampling2D(
|
||||
size=(dims[-3] // x.shape[1], dims[-2] // x.shape[2]), interpolation="bilinear",
|
||||
)(x)
|
||||
|
||||
out_1 = convolution_block(dspp_input, kernel_size=1, dilation_rate=1)
|
||||
out_6 = convolution_block(dspp_input, kernel_size=3, dilation_rate=6)
|
||||
out_12 = convolution_block(dspp_input, kernel_size=3, dilation_rate=12)
|
||||
out_18 = convolution_block(dspp_input, kernel_size=3, dilation_rate=18)
|
||||
|
||||
x = layers.Concatenate(axis=-1)([out_pool, out_1, out_6, out_12, out_18])
|
||||
output = convolution_block(x, kernel_size=1)
|
||||
return output
|
||||
|
||||
|
||||
def DeeplabV3Plus(image_size, num_classes):
|
||||
model_input = keras.Input(shape=(image_size, image_size, 3))
|
||||
resnet50 = keras.applications.ResNet50(
|
||||
weights="imagenet", include_top=False, input_tensor=model_input
|
||||
)
|
||||
x = resnet50.get_layer("conv4_block6_2_relu").output
|
||||
x = DilatedSpatialPyramidPooling(x)
|
||||
|
||||
input_a = layers.UpSampling2D(
|
||||
size=(image_size // 4 // x.shape[1], image_size // 4 // x.shape[2]),
|
||||
interpolation="bilinear",
|
||||
)(x)
|
||||
input_b = resnet50.get_layer("conv2_block3_2_relu").output
|
||||
input_b = convolution_block(input_b, num_filters=48, kernel_size=1)
|
||||
|
||||
x = layers.Concatenate(axis=-1)([input_a, input_b])
|
||||
x = convolution_block(x)
|
||||
x = convolution_block(x)
|
||||
x = layers.UpSampling2D(
|
||||
size=(image_size // x.shape[1], image_size // x.shape[2]),
|
||||
interpolation="bilinear",
|
||||
)(x)
|
||||
model_output = layers.Conv2D(num_classes, kernel_size=(1, 1), padding="same")(x)
|
||||
return keras.Model(inputs=model_input, outputs=model_output)
|
||||
|
||||
|
||||
model = DeeplabV3Plus(image_size=IMAGE_SIZE, num_classes=NUM_CLASSES)
|
||||
model.summary()
|
||||
|
||||
|
||||
|
||||
|
||||
# ████████ ██████ █████ ██ ███ ██ ██ ███ ██ ██████
|
||||
# ██ ██ ██ ██ ██ ██ ████ ██ ██ ████ ██ ██
|
||||
# ██ ██████ ███████ ██ ██ ██ ██ ██ ██ ██ ██ ██ ███
|
||||
# ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
|
||||
# ██ ██ ██ ██ ██ ██ ██ ████ ██ ██ ████ ██████
|
||||
|
||||
loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
||||
model.compile(
|
||||
optimizer=keras.optimizers.Adam(learning_rate=0.001),
|
||||
loss=loss,
|
||||
metrics=["accuracy"],
|
||||
)
|
||||
|
||||
history = model.fit(train_dataset,
|
||||
validation_data=val_dataset,
|
||||
epochs=25,
|
||||
callbacks=[
|
||||
tf.keras.callbacks.CSVLogger(
|
||||
filename=os.path.join(DIR_OUTPUT, "metrics.tsv"),
|
||||
separator="\t"
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
plt.plot(history.history["loss"])
|
||||
plt.title("Training Loss")
|
||||
plt.ylabel("loss")
|
||||
plt.xlabel("epoch")
|
||||
plt.savefig(os.path.join(DIR_OUTPUT, "loss.png"))
|
||||
|
||||
plt.plot(history.history["accuracy"])
|
||||
plt.title("Training Accuracy")
|
||||
plt.ylabel("accuracy")
|
||||
plt.xlabel("epoch")
|
||||
plt.savefig(os.path.join(DIR_OUTPUT, "acc.png"))
|
||||
|
||||
plt.plot(history.history["val_loss"])
|
||||
plt.title("Validation Loss")
|
||||
plt.ylabel("val_loss")
|
||||
plt.xlabel("epoch")
|
||||
plt.savefig(os.path.join(DIR_OUTPUT, "val_loss.png"))
|
||||
|
||||
plt.plot(history.history["val_accuracy"])
|
||||
plt.title("Validation Accuracy")
|
||||
plt.ylabel("val_accuracy")
|
||||
plt.xlabel("epoch")
|
||||
plt.savefig(os.path.join(DIR_OUTPUT, "val_acc.png"))
|
||||
|
||||
|
||||
|
||||
# ██ ███ ██ ███████ ███████ ██████ ███████ ███ ██ ██████ ███████
|
||||
# ██ ████ ██ ██ ██ ██ ██ ██ ████ ██ ██ ██
|
||||
# ██ ██ ██ ██ █████ █████ ██████ █████ ██ ██ ██ ██ █████
|
||||
# ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
|
||||
# ██ ██ ████ ██ ███████ ██ ██ ███████ ██ ████ ██████ ███████
|
||||
|
||||
# Loading the Colormap
|
||||
colormap = loadmat(
|
||||
"./instance-level_human_parsing/instance-level_human_parsing/human_colormap.mat"
|
||||
)["colormap"]
|
||||
colormap = colormap * 100
|
||||
colormap = colormap.astype(np.uint8)
|
||||
|
||||
|
||||
def infer(model, image_tensor):
|
||||
predictions = model.predict(np.expand_dims((image_tensor), axis=0))
|
||||
predictions = np.squeeze(predictions)
|
||||
predictions = np.argmax(predictions, axis=2)
|
||||
return predictions
|
||||
|
||||
|
||||
def decode_segmentation_masks(mask, colormap, n_classes):
|
||||
r = np.zeros_like(mask).astype(np.uint8)
|
||||
g = np.zeros_like(mask).astype(np.uint8)
|
||||
b = np.zeros_like(mask).astype(np.uint8)
|
||||
for l in range(0, n_classes):
|
||||
idx = mask == l
|
||||
r[idx] = colormap[l, 0]
|
||||
g[idx] = colormap[l, 1]
|
||||
b[idx] = colormap[l, 2]
|
||||
rgb = np.stack([r, g, b], axis=2)
|
||||
return rgb
|
||||
|
||||
|
||||
def get_overlay(image, colored_mask):
|
||||
image = tf.keras.preprocessing.image.array_to_img(image)
|
||||
image = np.array(image).astype(np.uint8)
|
||||
overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0)
|
||||
return overlay
|
||||
|
||||
|
||||
def plot_samples_matplotlib(filepath, display_list, figsize=(5, 3)):
|
||||
_, axes = plt.subplots(nrows=1, ncols=len(display_list), figsize=figsize)
|
||||
for i in range(len(display_list)):
|
||||
if display_list[i].shape[-1] == 3:
|
||||
axes[i].imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
|
||||
else:
|
||||
axes[i].imshow(display_list[i])
|
||||
plt.savefig(filepath)
|
||||
|
||||
|
||||
def plot_predictions(filepath, images_list, colormap, model):
|
||||
for image_file in images_list:
|
||||
image_tensor = read_image(image_file)
|
||||
prediction_mask = infer(image_tensor=image_tensor, model=model)
|
||||
prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 20)
|
||||
overlay = get_overlay(image_tensor, prediction_colormap)
|
||||
plot_samples_matplotlib(
|
||||
filepath,
|
||||
[image_tensor, overlay, prediction_colormap],
|
||||
figsize=(18, 14)
|
||||
)
|
||||
|
||||
|
||||
plot_predictions(os.path.join(DIR_OUTPUT, "predict_train.png"), train_images[:4], colormap, model=model)
|
||||
plot_predictions(os.path.join(DIR_OUTPUT, "predict_validate.png"), val_images[:4], colormap, model=model)
|
Loading…
Reference in a new issue