mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-22 17:23:01 +00:00
contrastive: rewrite the loss function.
The CLIP paper *does* kinda make sense I think
This commit is contained in:
parent
fad1399c2d
commit
843cc8dc7b
1 changed files with 8 additions and 5 deletions
|
@ -17,14 +17,17 @@ class LossContrastive(tf.keras.losses.Loss):
|
||||||
# rainfall = tf.reshape(rainfall, [self.batch_size, rainfall.shape[1]])
|
# rainfall = tf.reshape(rainfall, [self.batch_size, rainfall.shape[1]])
|
||||||
# water = tf.reshape(water, [self.batch_size, water.shape[1]])
|
# water = tf.reshape(water, [self.batch_size, water.shape[1]])
|
||||||
|
|
||||||
|
# logits = tf.linalg.matmul(rainfall, tf.transpose(water)) * tf.clip_by_value(tf.math.exp(self.weight_temperature), 0, 100)
|
||||||
logits = tf.linalg.matmul(rainfall, tf.transpose(water)) * tf.clip_by_value(tf.math.exp(self.weight_temperature), 0, 100)
|
logits = tf.linalg.matmul(rainfall, tf.transpose(water)) * tf.math.exp(self.weight_temperature)
|
||||||
|
|
||||||
# print("LOGITS", logits)
|
# print("LOGITS", logits)
|
||||||
|
|
||||||
labels = tf.eye(self.batch_size, dtype=tf.int32)
|
# labels = tf.eye(self.batch_size, dtype=tf.int32) # we *would* do this if we were using mean squared error...
|
||||||
loss_rainfall = tf.keras.metrics.binary_crossentropy(labels, logits, from_logits=True, axis=0)
|
labels = tf.range(self.batch_size, dtype=tf.int32) # each row is a different category we think
|
||||||
loss_water = tf.keras.metrics.binary_crossentropy(labels, logits, from_logits=True, axis=1)
|
loss_rainfall = tf.keras.metrics.sparse_categorical_crossentropy(labels, logits, from_logits=True, axis=0)
|
||||||
|
loss_water = tf.keras.metrics.sparse_categorical_crossentropy(labels, logits, from_logits=True, axis=1)
|
||||||
|
# loss_rainfall = tf.keras.metrics.binary_crossentropy(labels, logits, from_logits=True, axis=0)
|
||||||
|
# loss_water = tf.keras.metrics.binary_crossentropy(labels, logits, from_logits=True, axis=1)
|
||||||
|
|
||||||
loss = (loss_rainfall + loss_water) / 2
|
loss = (loss_rainfall + loss_water) / 2
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue