mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-22 01:12:59 +00:00
dlr: add learning_rate env var
This commit is contained in:
parent
2f0ce0aa13
commit
7b10f5c5fe
2 changed files with 4 additions and 2 deletions
|
@ -34,6 +34,7 @@ show_help() {
|
||||||
echo -e " NO_REMOVE_ISOLATED_PIXELS Set to any value to avoid the engine from removing isolated pixels - that is, water pixels with no other surrounding pixels, either side to side to diagonally." >&2;
|
echo -e " NO_REMOVE_ISOLATED_PIXELS Set to any value to avoid the engine from removing isolated pixels - that is, water pixels with no other surrounding pixels, either side to side to diagonally." >&2;
|
||||||
echo -e " EPOCHS The number of epochs to train for." >&2;
|
echo -e " EPOCHS The number of epochs to train for." >&2;
|
||||||
echo -e " LOSS The loss function to use. Default: cross-entropy (possible values: cross-entropy, cross-entropy-dice)." >&2;
|
echo -e " LOSS The loss function to use. Default: cross-entropy (possible values: cross-entropy, cross-entropy-dice)." >&2;
|
||||||
|
echo -e " LEARNING_RATE The learning rate to use. Default: 0.001." >&2;
|
||||||
echo -e " PATH_CHECKPOINT The path to a checkcpoint to load. If specified, a model will be loaded instead of being trained." >&2;
|
echo -e " PATH_CHECKPOINT The path to a checkcpoint to load. If specified, a model will be loaded instead of being trained." >&2;
|
||||||
echo -e " PREDICT_COUNT The number of items from the (SCRAMBLED) dataset to make a prediction for." >&2;
|
echo -e " PREDICT_COUNT The number of items from the (SCRAMBLED) dataset to make a prediction for." >&2;
|
||||||
echo -e " POSTFIX Postfix to append to the output dir (auto calculated)." >&2;
|
echo -e " POSTFIX Postfix to append to the output dir (auto calculated)." >&2;
|
||||||
|
@ -61,7 +62,7 @@ DIR_OUTPUT="output/$(date -u --rfc-3339=date)_${CODE}";
|
||||||
echo -e ">>> Additional args: ${ARGS}";
|
echo -e ">>> Additional args: ${ARGS}";
|
||||||
|
|
||||||
export PATH=$HOME/software/bin:$PATH;
|
export PATH=$HOME/software/bin:$PATH;
|
||||||
export IMAGE_SIZE BATCH_SIZE DIR_RAINFALLWATER PATH_HEIGHTMAP PATH_COLOURMAP STEPS_PER_EPOCH DIR_OUTPUT PATH_CHECKPOINT EPOCHS PREDICT_COUNT NO_REMOVE_ISOLATED_PIXELS LOSS;
|
export IMAGE_SIZE BATCH_SIZE DIR_RAINFALLWATER PATH_HEIGHTMAP PATH_COLOURMAP STEPS_PER_EPOCH DIR_OUTPUT PATH_CHECKPOINT EPOCHS PREDICT_COUNT NO_REMOVE_ISOLATED_PIXELS LOSS LEARNING_RATE;
|
||||||
|
|
||||||
echo ">>> Installing requirements";
|
echo ">>> Installing requirements";
|
||||||
conda run -n py38 pip install -q -r requirements.txt;
|
conda run -n py38 pip install -q -r requirements.txt;
|
||||||
|
|
|
@ -29,6 +29,7 @@ STEPS_PER_EPOCH = int(os.environ["STEPS_PER_EPOCH"]) if "STEPS_PER_EPOCH" in os.
|
||||||
REMOVE_ISOLATED_PIXELS = FALSE if "NO_REMOVE_ISOLATED_PIXELS" in os.environ else True
|
REMOVE_ISOLATED_PIXELS = FALSE if "NO_REMOVE_ISOLATED_PIXELS" in os.environ else True
|
||||||
EPOCHS = int(os.environ["EPOCHS"]) if "EPOCHS" in os.environ else 25
|
EPOCHS = int(os.environ["EPOCHS"]) if "EPOCHS" in os.environ else 25
|
||||||
LOSS = os.environ["LOSS"] if "LOSS" in os.environ else "cross-entropy"
|
LOSS = os.environ["LOSS"] if "LOSS" in os.environ else "cross-entropy"
|
||||||
|
LEARNING_RATE = float(os.environ["LEARNING_RATE"]) if "LEARNING_RATE" in os.environ else 0.001
|
||||||
|
|
||||||
DIR_OUTPUT=os.environ["DIR_OUTPUT"] if "DIR_OUTPUT" in os.environ else f"output/{datetime.utcnow().date().isoformat()}_deeplabv3plus_rainfall_TEST"
|
DIR_OUTPUT=os.environ["DIR_OUTPUT"] if "DIR_OUTPUT" in os.environ else f"output/{datetime.utcnow().date().isoformat()}_deeplabv3plus_rainfall_TEST"
|
||||||
|
|
||||||
|
@ -165,7 +166,7 @@ if PATH_CHECKPOINT is None:
|
||||||
raise Exception(f"Error: Unknown loss function '{LOSS}' (possible values: cross-entropy, cross-entropy-dice).")
|
raise Exception(f"Error: Unknown loss function '{LOSS}' (possible values: cross-entropy, cross-entropy-dice).")
|
||||||
|
|
||||||
model.compile(
|
model.compile(
|
||||||
optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
|
optimizer=tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE),
|
||||||
loss=loss_fn,
|
loss=loss_fn,
|
||||||
metrics=["accuracy"],
|
metrics=["accuracy"],
|
||||||
)
|
)
|
||||||
|
|
Loading…
Reference in a new issue