mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-22 01:12:59 +00:00
dlr: add PREDICT_AS_ONE
This commit is contained in:
parent
4bbc4c29c4
commit
7869505cfb
2 changed files with 37 additions and 22 deletions
|
@ -46,6 +46,7 @@ show_help() {
|
|||
echo -e " RANDSEED The random seed to use when shuffling filepaths. Default: unset, which means use a random value." >&2;
|
||||
echo -e " JIT_COMPILE Set to any value to compile the model with XLA." >&2;
|
||||
echo -e " PREDICT_COUNT The number of items from the (SCRAMBLED) dataset to make a prediction for." >&2;
|
||||
echo -e " PREDICT_AS_ONE [prediction only] Set to any value to avoid splitting the input dataset into training/validation and instead treat it as a single dataset. Default: False (treat it as training/validation)" >&2;
|
||||
echo -e " POSTFIX Postfix to append to the output dir (auto calculated)." >&2;
|
||||
echo -e " ARGS Optional. Any additional arguments to pass to the python program." >&2;
|
||||
echo -e "" >&2;
|
||||
|
@ -75,7 +76,7 @@ echo -e ">>> DIR_OUTPUT: ${DIR_OUTPUT}";
|
|||
echo -e ">>> Additional args: ${ARGS}";
|
||||
|
||||
export PATH=$HOME/software/bin:$PATH;
|
||||
export IMAGE_SIZE BATCH_SIZE DIR_RAINFALLWATER PATH_HEIGHTMAP PATH_COLOURMAP STEPS_PER_EPOCH DIR_OUTPUT PATH_CHECKPOINT EPOCHS PREDICT_COUNT NO_REMOVE_ISOLATED_PIXELS LOSS LEARNING_RATE DICE_LOG_COSH WATER_THRESHOLD UPSAMPLE STEPS_PER_EXECUTION JIT_COMPILE RANDSEED;
|
||||
export IMAGE_SIZE BATCH_SIZE DIR_RAINFALLWATER PATH_HEIGHTMAP PATH_COLOURMAP STEPS_PER_EPOCH DIR_OUTPUT PATH_CHECKPOINT EPOCHS PREDICT_COUNT NO_REMOVE_ISOLATED_PIXELS LOSS LEARNING_RATE DICE_LOG_COSH WATER_THRESHOLD UPSAMPLE STEPS_PER_EXECUTION JIT_COMPILE RANDSEED PREDICT_AS_ONE;
|
||||
|
||||
echo ">>> Installing requirements";
|
||||
conda run -n py38 pip install -q -r requirements.txt;
|
||||
|
|
|
@ -20,7 +20,7 @@ import matplotlib.pyplot as plt
|
|||
|
||||
import tensorflow as tf
|
||||
|
||||
from lib.dataset.dataset_mono import dataset_mono
|
||||
from lib.dataset.dataset_mono import dataset_mono, dataset_mono_predict
|
||||
from lib.ai.components.LossCrossEntropyDice import LossCrossEntropyDice
|
||||
from lib.ai.components.MetricDice import metric_dice_coefficient as dice_coefficient
|
||||
from lib.ai.components.MetricSensitivity import make_sensitivity as sensitivity
|
||||
|
@ -59,6 +59,7 @@ DIR_OUTPUT=os.environ["DIR_OUTPUT"] if "DIR_OUTPUT" in os.environ else f"output/
|
|||
|
||||
PATH_CHECKPOINT = os.environ["PATH_CHECKPOINT"] if "PATH_CHECKPOINT" in os.environ else None
|
||||
PREDICT_COUNT = int(os.environ["PREDICT_COUNT"]) if "PREDICT_COUNT" in os.environ else 25
|
||||
PREDICT_AS_ONE = True if "PREDICT_AS_ONE" in os.environ else False
|
||||
|
||||
# ~~~
|
||||
|
||||
|
@ -68,7 +69,7 @@ if not os.path.exists(DIR_OUTPUT):
|
|||
# ~~~
|
||||
|
||||
logger.info("DeepLabV3+ rainfall radar TEST")
|
||||
for env_name in [ "BATCH_SIZE","NUM_CLASSES", "DIR_RAINFALLWATER", "PATH_HEIGHTMAP", "PATH_COLOURMAP", "STEPS_PER_EPOCH", "REMOVE_ISOLATED_PIXELS", "EPOCHS", "LOSS", "LEARNING_RATE", "DIR_OUTPUT", "PATH_CHECKPOINT", "PREDICT_COUNT", "DICE_LOG_COSH", "WATER_THRESHOLD", "UPSAMPLE", "STEPS_PER_EXECUTION", "JIT_COMPILE" ]:
|
||||
for env_name in [ "BATCH_SIZE","NUM_CLASSES", "DIR_RAINFALLWATER", "PATH_HEIGHTMAP", "PATH_COLOURMAP", "STEPS_PER_EPOCH", "REMOVE_ISOLATED_PIXELS", "EPOCHS", "LOSS", "LEARNING_RATE", "DIR_OUTPUT", "PATH_CHECKPOINT", "PREDICT_COUNT", "DICE_LOG_COSH", "WATER_THRESHOLD", "UPSAMPLE", "STEPS_PER_EXECUTION", "JIT_COMPILE", "PREDICT_AS_ONE" ]:
|
||||
logger.info(f"> {env_name} {str(globals()[env_name])}")
|
||||
|
||||
|
||||
|
@ -78,7 +79,8 @@ for env_name in [ "BATCH_SIZE","NUM_CLASSES", "DIR_RAINFALLWATER", "PATH_HEIGHTM
|
|||
# ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
|
||||
# ██████ ██ ██ ██ ██ ██ ███████ ███████ ██
|
||||
|
||||
dataset_train, dataset_validate = dataset_mono(
|
||||
if not PREDICT_AS_ONE:
|
||||
dataset_train, dataset_validate = dataset_mono(
|
||||
dirpath_input=DIR_RAINFALLWATER,
|
||||
batch_size=BATCH_SIZE,
|
||||
water_threshold=WATER_THRESHOLD,
|
||||
|
@ -87,11 +89,22 @@ dataset_train, dataset_validate = dataset_mono(
|
|||
input_size="same",
|
||||
filepath_heightmap=PATH_HEIGHTMAP,
|
||||
do_remove_isolated_pixels=REMOVE_ISOLATED_PIXELS
|
||||
)
|
||||
|
||||
logger.info("Train Dataset:", dataset_train)
|
||||
logger.info("Validation Dataset:", dataset_validate)
|
||||
)
|
||||
|
||||
logger.info("Train Dataset:", dataset_train)
|
||||
logger.info("Validation Dataset:", dataset_validate)
|
||||
else:
|
||||
dataset_train = dataset_mono_predict(
|
||||
dirpath_input=DIR_RAINFALLWATER,
|
||||
batch_size=BATCH_SIZE,
|
||||
water_threshold=WATER_THRESHOLD,
|
||||
rainfall_scale_up=2, # done BEFORE cropping to the below size
|
||||
output_size=IMAGE_SIZE,
|
||||
input_size="same",
|
||||
filepath_heightmap=PATH_HEIGHTMAP,
|
||||
do_remove_isolated_pixels=REMOVE_ISOLATED_PIXELS
|
||||
)
|
||||
logger.info("Dataset AS_ONE:", dataset_train)
|
||||
|
||||
# ███ ███ ██████ ██████ ███████ ██
|
||||
# ████ ████ ██ ██ ██ ██ ██ ██
|
||||
|
@ -372,11 +385,12 @@ plot_predictions(
|
|||
colormap,
|
||||
model=model
|
||||
)
|
||||
plot_predictions(
|
||||
if not PREDICT_AS_ONE:
|
||||
plot_predictions(
|
||||
os.path.join(DIR_OUTPUT, "predict_validate_$$.png"),
|
||||
get_from_batched(dataset_validate, PREDICT_COUNT),
|
||||
colormap,
|
||||
model=model
|
||||
)
|
||||
)
|
||||
|
||||
logger.info(f"Complete at {str(datetime.now().isoformat())}, elapsed {str((datetime.now() - time_start).total_seconds())} seconds")
|
||||
|
|
Loading…
Reference in a new issue