train_mono_predict: initial implementation

This commit is contained in:
Starbeamrainbowlabs 2022-11-24 16:33:50 +00:00
parent d31326cb30
commit 773944f9fa
Signed by: sbrl
GPG key ID: 1BE5172E637709C2
2 changed files with 192 additions and 4 deletions

View file

@ -109,7 +109,7 @@ def dataset_mono(dirpath_input, train_percentage=0.8, **kwargs):
return dataset_train, dataset_validate #, filepaths return dataset_train, dataset_validate #, filepaths
def dataset_mono_predict(dirpath_input, parallel_reads_multiplier=1.5, prefetch=True): def dataset_mono_predict(dirpath_input):
"""Creates a tf.data.Dataset() for prediction using the contrastive learning model. """Creates a tf.data.Dataset() for prediction using the contrastive learning model.
Note that this WILL MANGLE THE ORDERING if you set parallel_reads_multiplier to anything other than 0!! Note that this WILL MANGLE THE ORDERING if you set parallel_reads_multiplier to anything other than 0!!
@ -126,10 +126,9 @@ def dataset_mono_predict(dirpath_input, parallel_reads_multiplier=1.5, prefetch=
return make_dataset( return make_dataset(
filepaths=filepaths, filepaths=filepaths,
metadata=read_metadata(dirpath_input), metadata=read_metadata(dirpath_input),
parallel_reads_multiplier=parallel_reads_multiplier,
batch_size=None, batch_size=None,
prefetch=prefetch, shuffle=False, #even with shuffle=False we're not gonna get them all in the same order since we're reading in parallel
shuffle=False #even with shuffle=False we're not gonna get them all in the same order since we're reading in parallel **kwargs
) )
if __name__ == "__main__": if __name__ == "__main__":

View file

@ -0,0 +1,189 @@
import io
import json
import os
import sys
import argparse
import re
from loguru import logger
import tensorflow as tf
from lib.dataset.batched_iterator import batched_iterator
from lib.io.handle_open import handle_open
from lib.ai.RainfallWaterMono import RainfallWaterMono
from lib.dataset.dataset_mono import dataset_mono_predict
from lib.io.find_paramsjson import find_paramsjson
from lib.io.readfile import readfile
from lib.vis.segmentation_plot import segmentation_plot
MODE_JSONL = 1
MODE_PNG = 2
def parse_args():
parser = argparse.ArgumentParser(description="Output water depth image segmentation maps using a given pretrained mono model.")
# parser.add_argument("--config", "-c", help="Filepath to the TOML config file to load.", required=True)
parser.add_argument("--input", "-i", help="Path to input directory containing the .tfrecord(.gz) files to predict for. If a single file is passed instead, then only that file will be converted.", required=True)
parser.add_argument("--output", "-o", help="Path to output file to write output to. If the file extension .png is used instead of .jsonl.gz, then an image is written instead (+d is replaced with the item index).")
parser.add_argument("--records-per-file", help="Optional, only valid with the .jsonl.gz file extension. If specified, this limits the number of records written to each file. When using this option, you MUST have the string '+d' (without quotes) somewhere in your output filepath.", type=int)
parser.add_argument("--checkpoint", "-c", help="Checkpoint file to load model weights from.", required=True)
parser.add_argument("--params", "-p", help="Optional. The file containing the model hyperparameters (usually called 'params.json'). If not specified, it's location will be determined automatically.")
parser.add_argument("--reads-multiplier", help="Optional. The multiplier for the number of files we should read from at once. Defaults to 0. When using this start with 1.5, which means read ceil(NUMBER_OF_CORES * 1.5). Set to a higher number of systems with high read latency to avoid starving the GPU of data. SETTING THIS WILL SCRAMBLE THE ORDER OF THE DATASET.")
parser.add_argument("--model-code", help="A description of the model used to predict the data. Will be inserted in the title of png plots.")
parser.add_argument("--log", help="Optional. If specified when the file extension is .jsonl[.gz], then this chooses what is logged. Specify a comma separated list of values. Possible values: rainfall_actual, water_actual, water_predict. Default: rainfall_actual,water_actual,water_predict.")
return parser
def run(args):
# Note that we do NOT check to see if the checkpoint file exists, because Tensorflow/Keras requires that we pass the stem instead of the actual index file..... :-/
if (not hasattr(args, "params")) or args.params == None:
args.params = find_paramsjson(args.checkpoint)
if args.params == None:
logger.error("Error: Failed to find params.json. Please ensure it's either in the same directory as the checkpoint or 1 level above")
return
if (not hasattr(args, "read_multiplier")) or args.read_multiplier == None:
args.read_multiplier = 0
if (not hasattr(args, "records_per_file")) or args.records_per_file == None:
args.records_per_file = 0 # 0 = unlimited
if (not hasattr(args, "output")) or args.output == None:
args.output = "-"
if (not hasattr(args, "model_code")) or args.model_code == None:
args.model_code = ""
if (not hasattr(args, "log")) or args.log == None:
args.log = "rainfall_actual,water_actual,water_predict"
args.log = args.log.strip().split(",")
if not os.path.exists(args.params):
raise Exception(f"Error: The specified filepath params.json hyperparameters ('{args.params}) does not exist.")
if not os.path.exists(args.checkpoint):
raise Exception(f"Error: The specified filepath to the checkpoint to load ('{args.checkpoint}) does not exist.")
if args.records_per_file > 0 and args.output.endswith(".jsonl.gz"):
dirpath_output=os.path.dirname(args.output)
if not os.path.exists(dirpath_output):
os.mkdir(dirpath_output)
model_params = json.loads(readfile(args.params))
ai = RainfallWaterMono.from_checkpoint(args.checkpoint, **model_params)
sys.stderr.write(f"\n\n>>> This is TensorFlow {tf.__version__}\n\n\n")
# Note that if using a directory of input files, the output order is NOT GUARANTEED TO BE THE SAME. In fact, it probably won't be.
dataset = dataset_predict(
dirpath_input=args.input,
parallel_reads_multiplier=args.read_multiplier
)
# for items in dataset_train.repeat(10):
# print("ITEMS", len(items))
# print("LEFT", [ item.shape for item in items[0] ])
# print("ITEMS DONE")
# exit(0)
output_mode = MODE_PNG if args.output.endswith(".png") else MODE_JSONL
logger.info("Output mode is "+("PNG" if output_mode == MODE_PNG else "JSONL"))
logger.info(f"Records per file: {args.records_per_file}")
if output_mode == MODE_JSONL:
do_jsonl(args, ai, dataset, model_params)
else:
do_png(args, ai, dataset, model_params)
sys.stderr.write(">>> Complete\n")
def do_png(args, ai, dataset, model_params):
if not os.path.exists(os.path.dirname(args.output)):
os.mkdir(os.path.dirname(args.output))
i = 0
gen = batched_iterator(dataset, tensors_in_item=2, batch_size=model_params["batch_size"])
for item in gen:
rainfall, water = item
water_predict_batch = ai.embed(rainfall)
water = tf.unstack(water, axis=0)
i_batch = 0
for water_predict in water_predict_batch:
# [ width, height, softmax_probabilities ] → [ batch, width, height ]
water_predict = tf.math.argmax(water_predict, axis=-1)
# [ width, height ]
water_actual = tf.squeeze(water[i_batch])
segmentation_plot(
water_actual, water_predict,
args.model_code,
args.output.replace("+d", str(i))
)
i_batch += 1
i += 1
if i % 100 == 0:
sys.stderr.write(f"Processed {i} items\r")
def do_jsonl(args, ai, dataset, model_params):
write_mode = "wt" if args.output.endswith(".gz") else "w"
handle = sys.stdout
filepath_metadata = None
if args.output != "-":
handle = handle_open(
args.output if args.records_per_file <= 0 else args.output.replace("+d", str(0)),
write_mode
)
filepath_metadata = os.path.join(os.path.dirname(args.output), "metadata.json")
logger.info(f"filepath_output: {args.output}")
logger.info(f"filepath_params: {filepath_metadata}")
i = 0
i_file = i
files_done = 0
for batch in batched_iterator(dataset, tensors_in_item=2, batch_size=model_params["batch_size"]):
rainfall_actual_batch, water_actual_batch = batch
water_predict_batch = ai.embed(rainfall_actual_batch)
water_actual_batch = tf.unstack(water_actual_batch, axis=0)
rainfall_actual_batch = tf.unstack(rainfall_actual_batch, axis=0)
i_batch = 0
for water_predict in water_predict_batch:
# [ width, height, softmax_probabilities ] → [ batch, width, height ]
# water_predict = tf.math.argmax(water_predict, axis=-1)
# [ width, height ]
water_actual = tf.squeeze(water_actual_batch[i_batch])
if args.records_per_file > 0 and i_file > args.records_per_file:
files_done += 1
i_file = 0
handle.close()
logger.info(f"PROGRESS:file {files_done}")
handle = handle_open(args.output.replace("+d", str(files_done+1)), write_mode)
item_obj = {}
if "rainfall_actual" in args.log:
item_obj["rainfall_actual"] = rainfall_actual_batch[i_batch].numpy().tolist()
if "water_actual" in args.log:
item_obj["water_actual"] = water_actual.numpy().tolist()
if "water_predict" in args.log:
item_obj["water_predict"] = water_predict.numpy().tolist()
handle.write(json.dumps(item_obj, separators=(',', ':'))+"\n") # Ref https://stackoverflow.com/a/64710892/1460422
if i == 0 or i % 100 == 0:
sys.stderr.write(f"[pretrain:predict] STEP {i}\r")
i_batch += 1
i += 1
i_file += 1
handle.close()