mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-12-22 14:15:01 +00:00
dlr: add env var for water thresholding
This commit is contained in:
parent
c5fc62c411
commit
623208ba6d
2 changed files with 4 additions and 2 deletions
|
@ -38,6 +38,7 @@ show_help() {
|
|||
echo -e " EPOCHS The number of epochs to train for." >&2;
|
||||
echo -e " LOSS The loss function to use. Default: cross-entropy (possible values: cross-entropy, cross-entropy-dice)." >&2;
|
||||
echo -e " DICE_LOG_COSH When in cross-entropy-dice mode, in addition do loss = cel + log(cosh(dice_loss)) instead of just loss = cel + dice_loss." >&2;
|
||||
echo -e " WATER_THRESHOLD The threshold to cut water off at when training, in metres. Default: 0.1" >&2;
|
||||
echo -e " PATH_CHECKPOINT The path to a checkcpoint to load. If specified, a model will be loaded instead of being trained." >&2;
|
||||
echo -e " LEARNING_RATE The learning rate to use. Default: 0.001." >&2;
|
||||
echo -e " PREDICT_COUNT The number of items from the (SCRAMBLED) dataset to make a prediction for." >&2;
|
||||
|
@ -70,7 +71,7 @@ echo -e ">>> DIR_OUTPUT: ${DIR_OUTPUT}";
|
|||
echo -e ">>> Additional args: ${ARGS}";
|
||||
|
||||
export PATH=$HOME/software/bin:$PATH;
|
||||
export IMAGE_SIZE BATCH_SIZE DIR_RAINFALLWATER PATH_HEIGHTMAP PATH_COLOURMAP STEPS_PER_EPOCH DIR_OUTPUT PATH_CHECKPOINT EPOCHS PREDICT_COUNT NO_REMOVE_ISOLATED_PIXELS LOSS LEARNING_RATE DICE_LOG_COSH;
|
||||
export IMAGE_SIZE BATCH_SIZE DIR_RAINFALLWATER PATH_HEIGHTMAP PATH_COLOURMAP STEPS_PER_EPOCH DIR_OUTPUT PATH_CHECKPOINT EPOCHS PREDICT_COUNT NO_REMOVE_ISOLATED_PIXELS LOSS LEARNING_RATE DICE_LOG_COSH WATER_THRESHOLD;
|
||||
|
||||
echo ">>> Installing requirements";
|
||||
conda run -n py38 pip install -q -r requirements.txt;
|
||||
|
|
|
@ -49,6 +49,7 @@ EPOCHS = int(os.environ["EPOCHS"]) if "EPOCHS" in os.environ else 50
|
|||
LOSS = os.environ["LOSS"] if "LOSS" in os.environ else "cross-entropy-dice"
|
||||
DICE_LOG_COSH = True if "DICE_LOG_COSH" in os.environ else False
|
||||
LEARNING_RATE = float(os.environ["LEARNING_RATE"]) if "LEARNING_RATE" in os.environ else 0.001
|
||||
WATER_THRESHOLD = float(os.environ["WATER_THRESHOLD"]) if "WATER_THRESHOLD" in os.environ else 0.1
|
||||
|
||||
DIR_OUTPUT=os.environ["DIR_OUTPUT"] if "DIR_OUTPUT" in os.environ else f"output/{datetime.utcnow().date().isoformat()}_deeplabv3plus_rainfall_TEST"
|
||||
|
||||
|
@ -76,7 +77,7 @@ for env_name in [ "BATCH_SIZE","NUM_CLASSES", "DIR_RAINFALLWATER", "PATH_HEIGHTM
|
|||
dataset_train, dataset_validate = dataset_mono(
|
||||
dirpath_input=DIR_RAINFALLWATER,
|
||||
batch_size=BATCH_SIZE,
|
||||
water_threshold=0.1,
|
||||
water_threshold=WATER_THRESHOLD,
|
||||
rainfall_scale_up=2, # done BEFORE cropping to the below size
|
||||
output_size=IMAGE_SIZE,
|
||||
input_size="same",
|
||||
|
|
Loading…
Reference in a new issue