mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-22 17:23:01 +00:00
LossContrastive: normalise features as per the paper
This commit is contained in:
parent
843cc8dc7b
commit
48ae8a5c20
1 changed files with 4 additions and 0 deletions
|
@ -17,6 +17,10 @@ class LossContrastive(tf.keras.losses.Loss):
|
||||||
# rainfall = tf.reshape(rainfall, [self.batch_size, rainfall.shape[1]])
|
# rainfall = tf.reshape(rainfall, [self.batch_size, rainfall.shape[1]])
|
||||||
# water = tf.reshape(water, [self.batch_size, water.shape[1]])
|
# water = tf.reshape(water, [self.batch_size, water.shape[1]])
|
||||||
|
|
||||||
|
# normalise features
|
||||||
|
rainfall = rainfall / tf.math.l2_normalize(rainfall, axis=1)
|
||||||
|
rainfall = rainfall / tf.math.l2_normalize(rainfall, axis=1)
|
||||||
|
|
||||||
# logits = tf.linalg.matmul(rainfall, tf.transpose(water)) * tf.clip_by_value(tf.math.exp(self.weight_temperature), 0, 100)
|
# logits = tf.linalg.matmul(rainfall, tf.transpose(water)) * tf.clip_by_value(tf.math.exp(self.weight_temperature), 0, 100)
|
||||||
logits = tf.linalg.matmul(rainfall, tf.transpose(water)) * tf.math.exp(self.weight_temperature)
|
logits = tf.linalg.matmul(rainfall, tf.transpose(water)) * tf.math.exp(self.weight_temperature)
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue