mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-25 10:32:59 +00:00
ai Bugfix LayerContrastiveEncoder: channels → input_channels
for consistency
This commit is contained in:
parent
ead8009425
commit
3e13ad12c8
2 changed files with 10 additions and 10 deletions
|
@ -7,7 +7,7 @@ from .convnext import make_convnext
|
|||
|
||||
class LayerContrastiveEncoder(tf.keras.layers.Layer):
|
||||
|
||||
def __init__(self, input_width, input_height, channels, arch_name="convnext_tiny", summary_file=None, feature_dim=2048, **kwargs):
|
||||
def __init__(self, input_width, input_height, input_channels, arch_name="convnext_tiny", summary_file=None, feature_dim=2048, **kwargs):
|
||||
"""Creates a new contrastive learning encoder layer.
|
||||
Note that the input format MUST be channels_last. This is because Tensorflow/Keras' Dense layer does NOT support specifying an axis. Go complain to them, not me.
|
||||
While this is intended for contrastive learning, this can (in theory) be used anywhere as it's just a generic wrapper layer.
|
||||
|
@ -24,18 +24,18 @@ class LayerContrastiveEncoder(tf.keras.layers.Layer):
|
|||
|
||||
print(f"input_width: {input_width}")
|
||||
print(f"input_height: {input_height}")
|
||||
print(f"channels: {channels}")
|
||||
print(f"channels: {input_channels}")
|
||||
|
||||
self.param_input_width = input_width
|
||||
self.param_input_height = input_height
|
||||
self.param_channels = channels
|
||||
self.param_feature_dim = feature_dim
|
||||
self.param_arch_name = arch_name
|
||||
self.param_input_width = input_width
|
||||
self.param_input_height = input_height
|
||||
self.param_input_channels = input_channels
|
||||
self.param_feature_dim = feature_dim
|
||||
self.param_arch_name = arch_name
|
||||
|
||||
"""The main ConvNeXt model that forms the encoder.
|
||||
"""
|
||||
self.encoder = make_convnext(
|
||||
input_shape = (self.param_input_width, self.param_input_height, self.param_channels),
|
||||
input_shape = (self.param_input_width, self.param_input_height, self.param_input_channels),
|
||||
classifier_activation = tf.nn.relu, # this is not actually a classifier, but rather a feature encoder
|
||||
num_classes = self.param_feature_dim, # size of the feature dimension, see the line above this one
|
||||
arch_name = self.param_arch_name
|
||||
|
|
|
@ -33,7 +33,7 @@ def model_rainfallwater_contrastive(metadata, shape_water, batch_size=64, featur
|
|||
rainfall = LayerContrastiveEncoder(
|
||||
input_width=rainfall_width,
|
||||
input_height=rainfall_height,
|
||||
channels=rainfall_channels,
|
||||
input_channels=rainfall_channels,
|
||||
feature_dim=feature_dim,
|
||||
summary_file=summary_file,
|
||||
arch_name="convnext_tiny",
|
||||
|
@ -42,7 +42,7 @@ def model_rainfallwater_contrastive(metadata, shape_water, batch_size=64, featur
|
|||
water = LayerContrastiveEncoder(
|
||||
input_width=water_width,
|
||||
input_height=water_height,
|
||||
channels=water_channels,
|
||||
input_channels=water_channels,
|
||||
feature_dim=feature_dim,
|
||||
arch_name="convnext_xtiny",
|
||||
summary_file=summary_file
|
||||
|
|
Loading…
Reference in a new issue