mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-22 01:12:59 +00:00
add moar env vars
This commit is contained in:
parent
0d41bbba94
commit
176dc022a0
2 changed files with 11 additions and 4 deletions
|
@ -32,6 +32,8 @@ show_help() {
|
|||
echo -e " PATH_COLOURMAP The path to the colourmap for predictive purposes." >&2;
|
||||
echo -e " PATH_CHECKPOINT The path to a checkcpoint to load. If specified, a model will be loaded instead of being trained." >&2;
|
||||
echo -e " STEPS_PER_EPOCH The number of steps to consider an epoch. Defaults to None, which means use the entire dataset." >&2;
|
||||
echo -e " EPOCHS The number of epochs to train for." >&2;
|
||||
echo -e " PREDICT_COUNT The number of items from the (SCRAMBLED) dataset to make a prediction for." >&2;
|
||||
echo -e " POSTFIX Postfix to append to the output dir (auto calculated)." >&2;
|
||||
echo -e " ARGS Optional. Any additional arguments to pass to the python program." >&2;
|
||||
echo -e "" >&2;
|
||||
|
@ -57,7 +59,7 @@ DIR_OUTPUT="output/$(date -u --rfc-3339=date)_${CODE}";
|
|||
echo -e ">>> Additional args: ${ARGS}";
|
||||
|
||||
export PATH=$HOME/software/bin:$PATH;
|
||||
export IMAGE_SIZE BATCH_SIZE DIR_RAINFALLWATER PATH_HEIGHTMAP PATH_COLOURMAP STEPS_PER_EPOCH DIR_OUTPUT PATH_CHECKPOINT;
|
||||
export IMAGE_SIZE BATCH_SIZE DIR_RAINFALLWATER PATH_HEIGHTMAP PATH_COLOURMAP STEPS_PER_EPOCH DIR_OUTPUT PATH_CHECKPOINT EPOCHS;
|
||||
|
||||
echo ">>> Installing requirements";
|
||||
conda run -n py38 pip install -q -r requirements.txt;
|
||||
|
|
|
@ -25,6 +25,9 @@ DIR_RAINFALLWATER = os.environ["DIR_RAINFALLWATER"]
|
|||
PATH_HEIGHTMAP = os.environ["PATH_HEIGHTMAP"]
|
||||
PATH_COLOURMAP = os.environ["PATH_COLOURMAP"]
|
||||
STEPS_PER_EPOCH = int(os.environ["STEPS_PER_EPOCH"]) if "STEPS_PER_EPOCH" in os.environ else None
|
||||
EPOCHS = int(os.environ["EPOCHS"]) if "EPOCHS" in os.environ else 25
|
||||
PREDICT_COUNT = int(os.environ["PREDICT_COUNT"]) if "PREDICT_COUNT" in os.environ else 4
|
||||
|
||||
|
||||
DIR_OUTPUT=os.environ["DIR_OUTPUT"] if "DIR_OUTPUT" in os.environ else f"output/{datetime.utcnow().date().isoformat()}_deeplabv3plus_rainfall_TEST"
|
||||
|
||||
|
@ -39,8 +42,10 @@ logger.info(f"> DIR_RAINFALLWATER {DIR_RAINFALLWATER}")
|
|||
logger.info(f"> PATH_HEIGHTMAP {PATH_HEIGHTMAP}")
|
||||
logger.info(f"> PATH_COLOURMAP {PATH_COLOURMAP}")
|
||||
logger.info(f"> STEPS_PER_EPOCH {STEPS_PER_EPOCH}")
|
||||
logger.info(f"> EPOCHS {EPOCHS}")
|
||||
logger.info(f"> DIR_OUTPUT {DIR_OUTPUT}")
|
||||
logger.info(f"> PATH_CHECKPOINT {PATH_CHECKPOINT}")
|
||||
logger.info(f"> PREDICT_COUNT {PREDICT_COUNT}")
|
||||
|
||||
|
||||
dataset_train, dataset_validate = dataset_mono(
|
||||
|
@ -153,7 +158,7 @@ if PATH_CHECKPOINT is None:
|
|||
logger.info(">>> Beginning training")
|
||||
history = model.fit(dataset_train,
|
||||
validation_data=dataset_validate,
|
||||
epochs=25,
|
||||
epochs=EPOCHS,
|
||||
callbacks=[
|
||||
tf.keras.callbacks.CSVLogger(
|
||||
filename=os.path.join(DIR_OUTPUT, "metrics.tsv"),
|
||||
|
@ -287,13 +292,13 @@ def get_from_batched(dataset, count):
|
|||
|
||||
plot_predictions(
|
||||
os.path.join(DIR_OUTPUT, "predict_train_$$.png"),
|
||||
get_from_batched(dataset_train, 4),
|
||||
get_from_batched(dataset_train, PREDICT_COUNT),
|
||||
colormap,
|
||||
model=model
|
||||
)
|
||||
plot_predictions(
|
||||
os.path.join(DIR_OUTPUT, "predict_validate_$$.png"),
|
||||
get_from_batched(dataset_validate, 4),
|
||||
get_from_batched(dataset_validate, PREDICT_COUNT),
|
||||
colormap,
|
||||
model=model
|
||||
)
|
||||
|
|
Loading…
Reference in a new issue