parser=argparse.ArgumentParser(description="Pretrain a contrastive learning model on a directory of rainfall+water .tfrecord.gz files.")
# parser.add_argument("--config", "-c", help="Filepath to the TOML config file to load.", required=True)
parser.add_argument("--input","-i",help="Path to input directory containing the .tfrecord.gz files to pretrain with",required=True)
parser.add_argument("--output","-o",help="Path to output directory to write output to (will be automatically created if it doesn't exist)",required=True)
parser.add_argument("--feature-dim",help="The size of the output feature dimension of the model [default: 200].",type=int)
parser.add_argument("--batch-size",help="Sets the batch size [default: 64].",type=int)
parser.add_argument("--reads-multiplier",help="Optional. The multiplier for the number of files we should read from at once. Defaults to 1.5, which means read ceil(NUMBER_OF_CORES * 1.5) files at once. Set to a higher number of systems with high read latency to avoid starving the GPU of data.")