mirror of
https://github.com/sbrl/research-rainfallradar
synced 2024-11-12 20:53:02 +00:00
85 lines
2.6 KiB
Python
85 lines
2.6 KiB
Python
|
import os
|
||
|
import io
|
||
|
import re
|
||
|
import sys
|
||
|
import json
|
||
|
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from ..io.readfile import readfile
|
||
|
from ..io.writefile import writefile
|
||
|
|
||
|
from .model_rainfallwater_contrastive import model_rainfallwater_contrastive
|
||
|
from .helpers import make_callbacks
|
||
|
from .helpers import summarywriter
|
||
|
from .components.LayerContrastiveEncoder import LayerContrastiveEncoder
|
||
|
from .components.LayerCheeseMultipleOut import LayerCheeseMultipleOut
|
||
|
from .helpers.summarywriter import summarywriter
|
||
|
|
||
|
class RainfallWaterContraster(object):
|
||
|
def __init__(self, dir_output=None, filepath_checkpoint=None, epochs=50, batch_size=64, **kwargs):
|
||
|
super(RainfallWaterContraster, self).__init__()
|
||
|
|
||
|
self.dir_output = dir_output
|
||
|
self.epochs = epochs
|
||
|
self.kwargs = kwargs
|
||
|
self.batch_size = batch_size
|
||
|
|
||
|
|
||
|
if filepath_checkpoint == None:
|
||
|
self.model = self.make_model()
|
||
|
if self.dir_output == None:
|
||
|
raise Exception("Error: dir_output was not specified, and since no checkpoint was loaded training mode is activated.")
|
||
|
if not os.path.exists(self.dir_output):
|
||
|
os.mkdir(self.dir_output)
|
||
|
|
||
|
self.filepath_summary = os.path.join(self.dir_output, "summary.txt")
|
||
|
|
||
|
summarywriter(self.model, self.filepath_summary)
|
||
|
writefile(os.path.join(self.dir_output, "params.json"), json.dumps(self.model.get_config()))
|
||
|
else:
|
||
|
self.model = self.load_model(filepath_checkpoint)
|
||
|
|
||
|
|
||
|
@staticmethod
|
||
|
def from_checkpoint(filepath_checkpoint, filepath_hyperparams):
|
||
|
hyperparams = json.loads(readfile(filepath_hyperparams))
|
||
|
return RainfallWaterContraster(filepath_checkpoint=filepath_checkpoint, **hyperparams)
|
||
|
|
||
|
def make_model(self):
|
||
|
model = model_rainfallwater_contrastive(batch_size=self.batch_size, **self.kwargs)
|
||
|
return model
|
||
|
|
||
|
def load_model(self, filepath_checkpoint):
|
||
|
"""
|
||
|
Loads a saved model from the given filename.
|
||
|
filepath_checkpoint (string): The filepath to load the saved model from.
|
||
|
"""
|
||
|
|
||
|
return tf.keras.models.load_model(filepath_checkpoint, custom_objects={
|
||
|
"LayerContrastiveEncoder": LayerContrastiveEncoder,
|
||
|
"LayerCheeseMultipleOut": LayerCheeseMultipleOut
|
||
|
})
|
||
|
|
||
|
|
||
|
|
||
|
def train(self, dataset_train, dataset_validate):
|
||
|
return self.model.fit(
|
||
|
dataset_train,
|
||
|
validation_data=dataset_validate,
|
||
|
epochs=self.epochs,
|
||
|
callbacks=make_callbacks(self.dir_output)
|
||
|
)
|
||
|
|
||
|
def embed(self, dataset):
|
||
|
result = []
|
||
|
i_batch = -1
|
||
|
for batch in dataset:
|
||
|
i_batch += 1
|
||
|
result_batch = self.model(batch[0])
|
||
|
# Currently, the left and right should be the same
|
||
|
left, _ = tf.unstack(result_batch, axis=-2)
|
||
|
result_batch = tf.unstack(left, axis=0)
|
||
|
result.extend(result_batch)
|
||
|
|
||
|
return result
|