import os import io import re import sys import json import tensorflow as tf from ..io.readfile import readfile from ..io.writefile import writefile from .model_rainfallwater_contrastive import model_rainfallwater_contrastive from .helpers import make_callbacks from .helpers import summarywriter from .components.LayerContrastiveEncoder import LayerContrastiveEncoder from .components.LayerCheeseMultipleOut import LayerCheeseMultipleOut from .helpers.summarywriter import summarywriter class RainfallWaterContraster(object): def __init__(self, dir_output=None, filepath_checkpoint=None, epochs=50, batch_size=64, **kwargs): super(RainfallWaterContraster, self).__init__() self.dir_output = dir_output self.epochs = epochs self.kwargs = kwargs self.batch_size = batch_size if filepath_checkpoint == None: self.model = self.make_model() if self.dir_output == None: raise Exception("Error: dir_output was not specified, and since no checkpoint was loaded training mode is activated.") if not os.path.exists(self.dir_output): os.mkdir(self.dir_output) self.filepath_summary = os.path.join(self.dir_output, "summary.txt") summarywriter(self.model, self.filepath_summary) writefile(os.path.join(self.dir_output, "params.json"), json.dumps(self.model.get_config())) else: self.model = self.load_model(filepath_checkpoint) @staticmethod def from_checkpoint(filepath_checkpoint, filepath_hyperparams): hyperparams = json.loads(readfile(filepath_hyperparams)) return RainfallWaterContraster(filepath_checkpoint=filepath_checkpoint, **hyperparams) def make_model(self): model = model_rainfallwater_contrastive(batch_size=self.batch_size, **self.kwargs) return model def load_model(self, filepath_checkpoint): """ Loads a saved model from the given filename. filepath_checkpoint (string): The filepath to load the saved model from. """ return tf.keras.models.load_model(filepath_checkpoint, custom_objects={ "LayerContrastiveEncoder": LayerContrastiveEncoder, "LayerCheeseMultipleOut": LayerCheeseMultipleOut }) def train(self, dataset_train, dataset_validate): return self.model.fit( dataset_train, validation_data=dataset_validate, epochs=self.epochs, callbacks=make_callbacks(self.dir_output) ) def embed(self, dataset): result = [] i_batch = -1 for batch in dataset: i_batch += 1 result_batch = self.model(batch[0]) # Currently, the left and right should be the same left, _ = tf.unstack(result_batch, axis=-2) result_batch = tf.unstack(left, axis=0) result.extend(result_batch) return result