Fill out README
This commit is contained in:
parent
65c2e81202
commit
271d623a78
1 changed files with 74 additions and 4 deletions
78
README.md
78
README.md
|
@ -2,13 +2,83 @@
|
||||||
|
|
||||||
> Predicting film genres from their posters with Tensorflow.js
|
> Predicting film genres from their posters with Tensorflow.js
|
||||||
|
|
||||||
|
## Dataset
|
||||||
|
The dataset used with this demo can be found here:
|
||||||
|
|
||||||
To use:
|
https://nextcloud.starbeamrainbowlabs.com/index.php/s/wmCdL4tX3HHGAFD
|
||||||
|
|
||||||
|
The format is as follows:
|
||||||
|
|
||||||
|
```
|
||||||
|
+ dataset_dir/
|
||||||
|
+ train/
|
||||||
|
+ 1234,Comedy,Fantasy.jpg
|
||||||
|
+ 4321,Western,Short,Drama.jpg
|
||||||
|
+ .....
|
||||||
|
+ validate/
|
||||||
|
+ 6789,Drama,Mystery,Thriller.jpg
|
||||||
|
+ 9876,History,Documentary,Animation.jpg
|
||||||
|
+ .....
|
||||||
|
```
|
||||||
|
|
||||||
|
The filenames of the images take the following format: `ID,GENRE_1,GENRE_2,GENRE_N.jpg`.
|
||||||
|
|
||||||
|
## System / User Requirements
|
||||||
|
- [Node.js](https://nodejs.org/)
|
||||||
|
- [NPM](https://www.npmjs.com/) (installed by default with Node.js)
|
||||||
|
- A relatively decent CPU
|
||||||
|
- Basic knowledge of the command-line / terminal
|
||||||
|
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
First, clone this git repo:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
node src/index.mjs train --input datasets/posters-256/ --output output/
|
git clone https://git.starbeamrainbowlabs.com/Demos/film-poster-genres.git
|
||||||
node src/index.mjs predict --input datasets/posters-256/validate/25410,Comedy,Family,Drama.jpg --ai-model output/checkpoints/49 2>/dev/null
|
cd film-poster-genres
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, install the dependencies:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm install
|
||||||
|
```
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
### Training
|
||||||
|
To train a new model:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
node src/index.mjs train --input path/to/dataset_dir --output path/to/output_dir
|
||||||
|
```
|
||||||
|
|
||||||
|
The output directory will look like this:
|
||||||
|
|
||||||
|
```
|
||||||
|
+ output_dir/
|
||||||
|
+ metrics.stream.json
|
||||||
|
+ checkpoints/
|
||||||
|
+ 0/
|
||||||
|
+ 1/
|
||||||
|
+ 2/
|
||||||
|
+ 3/
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
TODO: Fill out this README (and maybe move it to GitHub & make this repo a clone)
|
## Predicting
|
||||||
|
To make a prediction using an existing model:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
node src/index.mjs predict --input path/to/image.jpg --ai-model path/to/checkpoint_dir/
|
||||||
|
```
|
||||||
|
|
||||||
|
The result will be written to the standard output. Extra debugging data is written to the standard error, but this can be ignored.
|
||||||
|
|
||||||
|
|
||||||
|
## Contributing
|
||||||
|
Contributions are very welcome! Git patches are preferred - I can move this repo to GitHub if that makes it easier. Please mention in your contribution that you release your work under the MPL-2.0 (see below).
|
||||||
|
|
||||||
|
|
||||||
|
## Licence
|
||||||
|
This code is released under the Mozilla Public License 2.0. The full license text is included in the `LICENSE` file in this repository. Tldr legal have a [great summary](https://tldrlegal.com/license/mozilla-public-license-2.0-(mpl-2)) of the license if you're interested.
|
||||||
|
|
Loading…
Reference in a new issue