#include #include #include #include "settings.h" #include "storage.h" // Global static variable that's used to detect when LMIC has finished doing it's thing bool is_sending_complete = false; // Defined as part of LMIC, but LMIC is compiled and linked in separately extern "C" void lmic_aes_encrypt(unsigned char *Data, unsigned char *Key); void transmit_counter_save() { store_eeprom_uint32_save(0, LMIC.seqnoUp); store_eeprom_uint32_save(sizeof(uint32_t), LMIC.seqnoDn); } void transmit_init() { Serial.println(F("[LMIC] Init")); // LMIC init os_init(); // Reset the MAC state. Session and pending data transfers will be discarded. LMIC_reset(); // Set static session parameters. Instead of dynamically establishing a session // by joining the network, precomputed session parameters are be provided. #ifdef PROGMEM // On AVR, these values are stored in flash and only copied to RAM // once. Copy them to a temporary buffer here, LMIC_setSession will // copy them into a buffer of its own again. uint8_t appskey[sizeof(APPSKEY)]; uint8_t nwkskey[sizeof(NWKSKEY)]; memcpy_P(appskey, APPSKEY, sizeof(APPSKEY)); memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY)); LMIC_setSession (0x1, DEVADDR, nwkskey, appskey); #else // If not running an AVR with PROGMEM, just use the arrays directly LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY); #endif // Set up the channels used by the Things Network, which corresponds // to the defaults of most gateways. Without this, only three base // channels from the LoRaWAN specification are used, which certainly // works, so it is good for debugging, but can overload those // frequencies, so be sure to configure the full frequency range of // your network here (unless your network autoconfigures them). // Setting up channels should happen after LMIC_setSession, as that // configures the minimal channel set. LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band // TTN defines an additional channel at 869.525Mhz using SF9 for class B // devices' ping slots. LMIC does not have an easy way to define set this // frequency and support for class B is spotty and untested, so this // frequency is not configured here. // Disable link check validation LMIC_setLinkCheckMode(0); // Set data rate and transmit power (note: txpow seems to be ignored by the library) LMIC_setDrTxpow(DR_SF7,14); // Restore the frame counters LMIC.seqnoUp = store_eeprom_uint32_retrieve(0); LMIC.seqnoDn = store_eeprom_uint32_retrieve(sizeof(uint32_t)); // Serial.println(LMIC.seqnoUp); if(LMIC.seqnoUp >= 4294967295) { // The default value LMIC.seqnoUp = LMIC.seqnoDn = 0; // Reset to 0 transmit_counter_save(); } } /** * Sends a specified message via LoRaWAN. * @param data The message to send. * @param length The length of the given message. */ bool transmit_send(uint8_t* data, int length) { // Encrypt the data with the extra encryption key lmic_aes_encrypt(data, encrypt_key); // Check if there is not a current TX/RX job running if (LMIC.opmode & OP_TXRXPEND) { // Serial.println(F("OP_TXRXPEND: Job running, can't send")); return false; } // Prepare upstream data transmission at the next possible time. LMIC_setTxData2(1, data, length, 0); Serial.println(F("done")); // Run the LMIC loop, but only until it's finished sending the packet while (!is_sending_complete) { os_runloop_once(); } // Persist the frame counters transmit_counter_save(); // Reset it for next time (just in case) is_sending_complete = false; return true; } void onEvent (ev_t ev) { Serial.print(millis()); Serial.print(" "); switch(ev) { /*case EV_SCAN_TIMEOUT: Serial.println(F("EV_SCAN_TIMEOUT")); break; case EV_BEACON_FOUND: Serial.println(F("EV_BEACON_FOUND")); break; case EV_BEACON_MISSED: Serial.println(F("EV_BEACON_MISSED")); break; case EV_BEACON_TRACKED: Serial.println(F("EV_BEACON_TRACKED")); break; case EV_JOINING: Serial.println(F("EV_JOINING")); break; case EV_JOINED: Serial.println(F("EV_JOINED")); break; case EV_RFU1: Serial.println(F("EV_RFU1")); break; case EV_JOIN_FAILED: Serial.println(F("EV_JOIN_FAILED")); break; case EV_REJOIN_FAILED: Serial.println(F("EV_REJOIN_FAILED")); break;*/ case EV_TXCOMPLETE: Serial.println(F("EV_TXCOMPLETE incl. RX")); if(LMIC.dataLen) { // data received in rx slot after tx Serial.print(F("Received: ")); Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen); Serial.println(); } // We're done! is_sending_complete = true; break; /*case EV_LOST_TSYNC: Serial.println(F("EV_LOST_TSYNC")); break; case EV_RESET: Serial.println(F("EV_RESET")); break;*/ case EV_RXCOMPLETE: // data received in ping slot Serial.println(F("EV_RXCOMPLETE")); break; /*case EV_LINK_DEAD: Serial.println(F("EV_LINK_DEAD")); break; case EV_LINK_ALIVE: Serial.println(F("EV_LINK_ALIVE")); break;*/ default: Serial.print(F("Unknown event ")); Serial.println(ev); break; } }