Add explicit chip select thingy

This commit is contained in:
Starbeamrainbowlabs 2019-06-24 11:58:59 +01:00
parent 9c65f1e588
commit 31a372e641

View file

@ -43,153 +43,160 @@ const unsigned TX_INTERVAL = 60;
// Pin mapping // Pin mapping
const lmic_pinmap lmic_pins = { const lmic_pinmap lmic_pins = {
.nss = 10, .nss = 10,
.rxtx = LMIC_UNUSED_PIN, .rxtx = LMIC_UNUSED_PIN,
.rst = 9, .rst = 9,
.dio = {2, 6, 7}, .dio = {2, 6, 7},
}; };
void onEvent (ev_t ev) { void onEvent (ev_t ev) {
Serial.print(os_getTime()); Serial.print(os_getTime());
Serial.print(": "); Serial.print(": ");
switch(ev) { switch(ev) {
case EV_SCAN_TIMEOUT: case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT")); Serial.println(F("EV_SCAN_TIMEOUT"));
break; break;
case EV_BEACON_FOUND: case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND")); Serial.println(F("EV_BEACON_FOUND"));
break; break;
case EV_BEACON_MISSED: case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED")); Serial.println(F("EV_BEACON_MISSED"));
break; break;
case EV_BEACON_TRACKED: case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED")); Serial.println(F("EV_BEACON_TRACKED"));
break; break;
case EV_JOINING: case EV_JOINING:
Serial.println(F("EV_JOINING")); Serial.println(F("EV_JOINING"));
break; break;
case EV_JOINED: case EV_JOINED:
Serial.println(F("EV_JOINED")); Serial.println(F("EV_JOINED"));
break; break;
case EV_RFU1: case EV_RFU1:
Serial.println(F("EV_RFU1")); Serial.println(F("EV_RFU1"));
break; break;
case EV_JOIN_FAILED: case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED")); Serial.println(F("EV_JOIN_FAILED"));
break; break;
case EV_REJOIN_FAILED: case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED")); Serial.println(F("EV_REJOIN_FAILED"));
break; break;
break; break;
case EV_TXCOMPLETE: case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if(LMIC.dataLen) { if(LMIC.dataLen) {
// data received in rx slot after tx // data received in rx slot after tx
Serial.print(F("Data Received: ")); Serial.print(F("Data Received: "));
Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen); Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);
Serial.println(); Serial.println();
} }
// Schedule next transmission // Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send); os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
break; break;
case EV_LOST_TSYNC: case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC")); Serial.println(F("EV_LOST_TSYNC"));
break; break;
case EV_RESET: case EV_RESET:
Serial.println(F("EV_RESET")); Serial.println(F("EV_RESET"));
break; break;
case EV_RXCOMPLETE: case EV_RXCOMPLETE:
// data received in ping slot // data received in ping slot
Serial.println(F("EV_RXCOMPLETE")); Serial.println(F("EV_RXCOMPLETE"));
break; break;
case EV_LINK_DEAD: case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD")); Serial.println(F("EV_LINK_DEAD"));
break; break;
case EV_LINK_ALIVE: case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE")); Serial.println(F("EV_LINK_ALIVE"));
break; break;
default: default:
Serial.println(F("Unknown event")); Serial.println(F("Unknown event"));
break; break;
} }
} }
void do_send(osjob_t* j){ void do_send(osjob_t* j){
// Check if there is not a current TX/RX job running // Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) { if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending")); Serial.println(F("OP_TXRXPEND, not sending"));
} else { } else {
// Prepare upstream data transmission at the next possible time. // Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0); LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
Serial.println(F("Packet queued")); Serial.println(F("Packet queued"));
} }
// Next TX is scheduled after TX_COMPLETE event. // Next TX is scheduled after TX_COMPLETE event.
} }
void setup() { void setup() {
Serial.begin(115200); Serial.begin(115200);
Serial.println(F("Starting")); Serial.println(F("Starting"));
#define PIN_CS 10
#define PIN_CS_2 3
pinMode(PIN_CS, OUTPUT);
pinMode(PIN_CS_2, OUTPUT);
digitalWrite(PIN_CS, LOW); // We want to talk to the RFM 95
digitalWrite(PIN_CS_2, HIGH);
#ifdef VCC_ENABLE #ifdef VCC_ENABLE
// For Pinoccio Scout boards // For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT); pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH); digitalWrite(VCC_ENABLE, HIGH);
delay(1000); delay(1000);
#endif #endif
// LMIC init // LMIC init
os_init(); os_init();
// Reset the MAC state. Session and pending data transfers will be discarded. // Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset(); LMIC_reset();
// Set static session parameters. Instead of dynamically establishing a session // Set static session parameters. Instead of dynamically establishing a session
// by joining the network, precomputed session parameters are be provided. // by joining the network, precomputed session parameters are be provided.
#ifdef PROGMEM #ifdef PROGMEM
// On AVR, these values are stored in flash and only copied to RAM // On AVR, these values are stored in flash and only copied to RAM
// once. Copy them to a temporary buffer here, LMIC_setSession will // once. Copy them to a temporary buffer here, LMIC_setSession will
// copy them into a buffer of its own again. // copy them into a buffer of its own again.
uint8_t appskey[sizeof(APPSKEY)]; uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)]; uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY)); memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY)); memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey); LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
#else #else
// If not running an AVR with PROGMEM, just use the arrays directly // If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY); LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
#endif #endif
// Set up the channels used by the Things Network, which corresponds // Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base // to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly // channels from the LoRaWAN specification are used, which certainly
// works, so it is good for debugging, but can overload those // works, so it is good for debugging, but can overload those
// frequencies, so be sure to configure the full frequency range of // frequencies, so be sure to configure the full frequency range of
// your network here (unless your network autoconfigures them). // your network here (unless your network autoconfigures them).
// Setting up channels should happen after LMIC_setSession, as that // Setting up channels should happen after LMIC_setSession, as that
// configures the minimal channel set. // configures the minimal channel set.
LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band
LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band
// TTN defines an additional channel at 869.525Mhz using SF9 for class B // TTN defines an additional channel at 869.525Mhz using SF9 for class B
// devices' ping slots. LMIC does not have an easy way to define set this // devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this // frequency and support for class B is spotty and untested, so this
// frequency is not configured here. // frequency is not configured here.
// Disable link check validation // Disable link check validation
LMIC_setLinkCheckMode(0); LMIC_setLinkCheckMode(0);
// Set data rate and transmit power (note: txpow seems to be ignored by the library) // Set data rate and transmit power (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14); LMIC_setDrTxpow(DR_SF7,14);
// Start job // Start job
do_send(&sendjob); do_send(&sendjob);
} }
void loop() { void loop() {
os_runloop_once(); os_runloop_once();
} }