import math from loguru import logger import tensorflow as tf from .components.convnext_inverse import do_convnext_inverse def model_rainfallwater_segmentation(metadata, feature_dim_in, shape_water_out, batch_size=64, summary_file=None): out_water_width, out_water_height = shape_water_out layer_input = tf.keras.layers.Input( shape=(feature_dim_in) ) # BEGIN layer_next = tf.keras.layers.Dense(name="cns.stage.begin.dense1", units=feature_dim_in)(layer_input) layer_next = tf.keras.layers.ReLU(name="cns.stage_begin.relu1")(layer_next) layer_next = tf.keras.layers.LayerNormalization(name="cns.stage_begin.norm1", epsilon=1e-6)(layer_next) layer_next = tf.keras.layers.Reshape((4, 4, math.floor(feature_dim_in/(4*4))), name="cns.stable_begin.reshape")(layer_next) layer_next = tf.keras.layers.Dense(name="cns.stage.begin.dense2", units=feature_dim_in)(layer_next) layer_next = tf.keras.layers.ReLU(name="cns.stage_begin.relu2")(layer_next) layer_next = tf.keras.layers.LayerNormalization(name="cns.stage_begin.norm2", epsilon=1e-6)(layer_next) # layer_next = tf.keras.layers.Reshape((1, 1, feature_dim_in), name="cns.stable_begin.reshape")(layer_next) layer_next = do_convnext_inverse(layer_next, arch_name="convnext_i_tiny") # TODO: An attention layer here instead of a dense layer, with a skip connection perhaps? logger.warning("Warning: TODO implement attention from https://ieeexplore.ieee.org/document/9076883") layer_next = tf.keras.layers.Dense(32)(layer_next) layer_next = tf.keras.layers.Conv2D(1, kernel_size=1, activation="softmax", padding="same")(layer_next) model = tf.keras.Model( inputs = layer_input, outputs = layer_next ) model.compile( optimizer="Adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=["accuracy"] ) return model