import math from loguru import logger import tensorflow as tf from .components.convnext_inverse import do_convnext_inverse from .components.LayerStack2Image import LayerStack2Image def model_rainfallwater_segmentation(metadata, shape_water_out, model_arch="convnext_i_xtiny", batch_size=64, water_bins=2): """Makes a new rainfall / waterdepth segmentation head model. Args: metadata (dict): A dictionary of metadata about the dataset to use to build the model with. shape_water_out (int[]): The width and height (in that order) that should dictate the output shape of the segmentation head. CURRENTLY NOT USED. model_arch (str, optional): The architecture code for the underlying (inverted) ConvNeXt model. Defaults to "convnext_i_xtiny". batch_size (int, optional): The batch size. Reduce to save memory. Defaults to 64. water_bins (int, optional): The number of classes that the water depth output oft he segmentation head should be binned into. Defaults to 2. Returns: tf.keras.Model: The new model, freshly compiled for your convenience! :D """ out_water_width, out_water_height = shape_water_out feature_dim_in = metadata["rainfallradar"][0] layer_input = tf.keras.layers.Input( shape=(feature_dim_in) ) # BEGIN layer_next = tf.keras.layers.Dense(name="cns.stage.begin.dense1", units=feature_dim_in)(layer_input) layer_next = tf.keras.layers.ReLU(name="cns.stage_begin.relu1")(layer_next) layer_next = tf.keras.layers.LayerNormalization(name="cns.stage_begin.norm1", epsilon=1e-6)(layer_next) layer_next = LayerStack2Image(target_width=4, target_height=4)(layer_next) # layer_next = tf.keras.layers.Reshape((4, 4, math.floor(feature_dim_in/(4*4))), name="cns.stable_begin.reshape")(layer_next) layer_next = tf.keras.layers.Dense(name="cns.stage.begin.dense2", units=feature_dim_in)(layer_next) layer_next = tf.keras.layers.ReLU(name="cns.stage_begin.relu2")(layer_next) layer_next = tf.keras.layers.LayerNormalization(name="cns.stage_begin.norm2", epsilon=1e-6)(layer_next) # layer_next = tf.keras.layers.Reshape((1, 1, feature_dim_in), name="cns.stable_begin.reshape")(layer_next) layer_next = do_convnext_inverse(layer_next, arch_name=model_arch) # TODO: An attention layer here instead of a dense layer, with a skip connection perhaps? logger.warning("Warning: TODO implement attention from https://ieeexplore.ieee.org/document/9076883") layer_next = tf.keras.layers.Dense(32, activation="relu")(layer_next) layer_next = tf.keras.layers.Conv2D(water_bins, activation="relu", kernel_size=1, padding="same")(layer_next) layer_next = tf.keras.layers.Softmax(axis=-1)(layer_next) model = tf.keras.Model( inputs = layer_input, outputs = layer_next ) model.compile( optimizer="Adam", loss=tf.keras.losses.CategoricalCrossentropy(), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()] ) return model