diff --git a/aimodel/src/rainfallwater_identity_TEST.ipynb b/aimodel/src/rainfallwater_identity_TEST.ipynb index acd3ba2..17a5416 100644 --- a/aimodel/src/rainfallwater_identity_TEST.ipynb +++ b/aimodel/src/rainfallwater_identity_TEST.ipynb @@ -10,8 +10,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-01-05 20:04:42.075078: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", - "2023-01-05 20:04:42.075095: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n" + "2023-01-06 18:45:38.088928: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", + "2023-01-06 18:45:38.088955: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n" ] } ], @@ -59,18 +59,18 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-01-05 20:04:44.225064: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:975] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", - "2023-01-05 20:04:44.225397: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", - "2023-01-05 20:04:44.225497: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublas.so.11'; dlerror: libcublas.so.11: cannot open shared object file: No such file or directory\n", - "2023-01-05 20:04:44.225576: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublasLt.so.11'; dlerror: libcublasLt.so.11: cannot open shared object file: No such file or directory\n", - "2023-01-05 20:04:44.225660: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcufft.so.10'; dlerror: libcufft.so.10: cannot open shared object file: No such file or directory\n", - "2023-01-05 20:04:44.225731: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcurand.so.10'; dlerror: libcurand.so.10: cannot open shared object file: No such file or directory\n", - "2023-01-05 20:04:44.225796: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcusolver.so.11'; dlerror: libcusolver.so.11: cannot open shared object file: No such file or directory\n", - "2023-01-05 20:04:44.225861: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcusparse.so.11'; dlerror: libcusparse.so.11: cannot open shared object file: No such file or directory\n", - "2023-01-05 20:04:44.225944: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory\n", - "2023-01-05 20:04:44.225961: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1850] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.\n", + "2023-01-06 18:45:42.019487: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:975] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n", + "2023-01-06 18:45:42.019743: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", + "2023-01-06 18:45:42.019824: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublas.so.11'; dlerror: libcublas.so.11: cannot open shared object file: No such file or directory\n", + "2023-01-06 18:45:42.019903: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublasLt.so.11'; dlerror: libcublasLt.so.11: cannot open shared object file: No such file or directory\n", + "2023-01-06 18:45:42.019979: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcufft.so.10'; dlerror: libcufft.so.10: cannot open shared object file: No such file or directory\n", + "2023-01-06 18:45:42.020049: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcurand.so.10'; dlerror: libcurand.so.10: cannot open shared object file: No such file or directory\n", + "2023-01-06 18:45:42.020119: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcusolver.so.11'; dlerror: libcusolver.so.11: cannot open shared object file: No such file or directory\n", + "2023-01-06 18:45:42.020192: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcusparse.so.11'; dlerror: libcusparse.so.11: cannot open shared object file: No such file or directory\n", + "2023-01-06 18:45:42.020265: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory\n", + "2023-01-06 18:45:42.020277: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1850] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.\n", "Skipping registering GPU devices...\n", - "2023-01-05 20:04:44.226508: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", + "2023-01-06 18:45:42.020683: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" ] }, @@ -86,8 +86,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-01-05 20:04:47.011 | WARNING | lib.ai.model_rainfallwater_mono:model_rainfallwater_mono:71 - Warning: TODO implement attention from https://ieeexplore.ieee.org/document/9076883\n", - "2023-01-05 20:04:47.054 | INFO | lib.ai.model_rainfallwater_mono:model_rainfallwater_mono:86 - learning_rate: 3e-05\n" + "2023-01-06 18:45:44.801 | WARNING | lib.ai.model_rainfallwater_mono:model_rainfallwater_mono:71 - Warning: TODO implement attention from https://ieeexplore.ieee.org/document/9076883\n", + "2023-01-06 18:45:44.833 | INFO | lib.ai.model_rainfallwater_mono:model_rainfallwater_mono:86 - learning_rate: 3e-05\n" ] } ], @@ -103,7 +103,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "78c633e1", "metadata": {}, "outputs": [ @@ -113,6 +113,26 @@ "text": [ "cells 4096 cells/2 2048.0 shape+ (64, 64) tf.Tensor(1015, shape=(), dtype=int64)\n" ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGfCAYAAAD22G0fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAfQUlEQVR4nO3df2xV9f3H8ddF4ErhcsUf3NvGilUvKr8UKatUZ+uULswZGYlTQYdZsoAFpWMLWpuMavRexKSpC9oFZrDEdf1H2Vim0i5K2dIwsdpYi6k4qlblrtFhb1XWKny+fzjO12tb5bb38rn33OcjOQn9nHNv3x/a8uLT+76f4zHGGAEAYME42wUAALIXIQQAsIYQAgBYQwgBAKwhhAAA1hBCAABrCCEAgDWEEADAGkIIAGANIQQAsGZ8qp74iSee0KOPPqrDhw9r9uzZqq2t1fe///3vfNzx48f14YcfyufzyePxpKo8AECKGGPU39+vvLw8jRv3HWsdkwKNjY1mwoQJZtu2bebAgQNm3bp1ZvLkyebdd9/9zsf29PQYSRwcHBwcGX709PR857/5HmOSv4FpUVGRrrjiCtXV1Tljl156qZYuXapIJPKtj+3r69MZZ5yhd189X1OnjP63hT+ZOXfUj0Xq7Xyrw3YJOAX4OcxOX+oL/UPP6ZNPPpHf7//Wa5P+67jBwUG1tbXpvvvuixsvKytTa2vrkOsHBgY0MDDgfNzf3y9JmjplnKb6Rh9C4z0TRv1YpN5YvrbIHPwcZqn/LW1O5iWVpP9L8NFHH+nYsWMKBAJx44FAQNFodMj1kUhEfr/fOfLz85NdEgAgTaXsv6PfTEBjzLCpWFlZqb6+Pufo6elJVUkAgDST9F/HnX322TrttNOGrHp6e3uHrI4kyev1yuv1JrsMAGlg94ftw47/MO/yU1oH0lfSV0ITJ07UggUL1NzcHDfe3Nys4uLiZH86AEAGS8n7hNavX6877rhDhYWFWrRokbZu3ar33ntPq1evTsWnAwBkqJSE0C233KKPP/5YDz74oA4fPqw5c+boueee04wZM1Lx6QAAGSplOyaUl5ervLw8VU8PAHAB3qwBALAmZSuhsfrJzLm80S3DjNQJNZyRuqMSeQ5krmR8r8AdWAkBAKwhhAAA1hBCAABrCCEAgDVp25iAzJPIC8g0IOBkJeN7heaG9MVKCABgDSEEALCGEAIAWEMIAQCsIYQAANbQHYeUoxMOtiX6PUg33anDSggAYA0hBACwhhACAFhDCAEArCGEAADW0B2HEdHVhmw10vc+XXPJx0oIAGANIQQAsIYQAgBYQwgBAKwhhAAA1tAdB7rgAFjDSggAYA0hBACwhhACAFhDCAEArKExIcvQhAAgnbASAgBYQwgBAKwhhAAA1hBCAABrCCEAgDV0xwHASUqku5Qb4J0cVkIAAGsIIQCANYQQAMAaQggAYA0hBACwhu44l2KPOCA9jfSzma3ddKyEAADWEEIAAGsIIQCANYQQAMAaQggAYE3C3XF79+7Vo48+qra2Nh0+fFg7d+7U0qVLnfPGGD3wwAPaunWrjhw5oqKiIj3++OOaPXt2MuvG/9AFB6SnRH82s7VrLuGV0GeffabLLrtMW7ZsGfb85s2bVVNToy1btmj//v0KBoNavHix+vv7x1wsAMBdEl4JLVmyREuWLBn2nDFGtbW1qqqq0rJlyyRJ9fX1CgQCamho0KpVq4Y8ZmBgQAMDA87HsVgs0ZIAABkqqa8JdXd3KxqNqqyszBnzer0qKSlRa2vrsI+JRCLy+/3OkZ+fn8ySAABpLKkhFI1GJUmBQCBuPBAIOOe+qbKyUn19fc7R09OTzJIAAGksJdv2eDyeuI+NMUPGTvB6vfJ6vakoAwCQ5pIaQsFgUNJXK6Lc3FxnvLe3d8jqCADw3dzeNZfUX8cVFBQoGAyqubnZGRscHFRLS4uKi4uT+akAAC6Q8Ero008/1dtvv+183N3drfb2dp155pk677zzVFFRoXA4rFAopFAopHA4rJycHC1fvjyphQMAMl/CIfTKK6/o2muvdT5ev369JGnlypV66qmntGHDBh09elTl5eXOm1Wbmprk8/mSVzUAwBU8xhhju4ivi8Vi8vv9KtVNGu+ZYLuctMeOCUB2SufXhL40X2iP/qy+vj5NnTr1W6/lpnYZgrAB8HWJ/JuQzoHFBqYAAGsIIQCANYQQAMAaQggAYA0hBACwhu64NEQnHIBswUoIAGANIQQAsIYQAgBYQwgBAKwhhAAA1tAdZxFdcABOhXS+MR4rIQCANYQQAMAaQggAYA0hBACwhhACAFhDdxwAZKl06JpjJQQAsIYQAgBYQwgBAKwhhAAA1tCYAAAulw7b84yElRAAwBpCCABgDSEEALCGEAIAWEMIAQCsoTvuFODmdQBsSofteUbCSggAYA0hBACwhhACAFhDCAEArCGEAADW0B0HAFkqHbrmWAkBAKwhhAAA1hBCAABrCCEAgDWEEADAGrrjACBLsXccACCrEUIAAGsIIQCANYQQAMCahEIoEolo4cKF8vl8mj59upYuXaqurq64a4wxqq6uVl5eniZNmqTS0lJ1dnYmtWgAgDsk1B3X0tKiNWvWaOHChfryyy9VVVWlsrIyHThwQJMnT5Ykbd68WTU1NXrqqac0c+ZMPfTQQ1q8eLG6urrk8/lSMol0wR1UASAxCYXQCy+8EPfx9u3bNX36dLW1temaa66RMUa1tbWqqqrSsmXLJEn19fUKBAJqaGjQqlWrklc5ACDjjek1ob6+PknSmWeeKUnq7u5WNBpVWVmZc43X61VJSYlaW1uHfY6BgQHFYrG4AwCQHUYdQsYYrV+/XldffbXmzJkjSYpGo5KkQCAQd20gEHDOfVMkEpHf73eO/Pz80ZYEAMgwow6htWvX6vXXX9cf//jHIec8Hk/cx8aYIWMnVFZWqq+vzzl6enpGWxIAIMOMatueu+++W7t27dLevXt17rnnOuPBYFDSVyui3NxcZ7y3t3fI6ugEr9crr9c7mjIA4KSMtD1Nos1EyXqedJGMuse69U9CKyFjjNauXatnn31WL774ogoKCuLOFxQUKBgMqrm52RkbHBxUS0uLiouLx1QoAMB9EloJrVmzRg0NDfrzn/8sn8/nvM7j9/s1adIkeTweVVRUKBwOKxQKKRQKKRwOKycnR8uXL0/JBAAAmSuhEKqrq5MklZaWxo1v375dd955pyRpw4YNOnr0qMrLy3XkyBEVFRWpqanJ9e8RAgAkLqEQMsZ85zUej0fV1dWqrq4ebU0AgCzB3nEAAGu4qR0AV0mkWyuVXXPp1DGXaAfbqaydlRAAwBpCCABgDSEEALCGEAIAWEMIAQCsoTsOQEYa655lGFki3X7Djcf6j2vazJP7XKyEAADWEEIAAGsIIQCANYQQAMAaQggAYA3dcQBwkkbqEBuum8xtd2FNpBvxS/OFpEMndS0rIQCANYQQAMAaQggAYA0hBACwhhACAFhDd1wSua0bBkgH7BE3dsm4U2wiz83ecQCAjEAIAQCsIYQAANYQQgAAa2hMSCIaEIDRy4QGhGTUmAkNTKeyFlZCAABrCCEAgDWEEADAGkIIAGANIQQAsIbuuFFIpy4WIBOleydcutdnAze1AwC4DiEEALCGEAIAWEMIAQCsIYQAANbQHTcKmbD3EwAk00j/vo21k5CVEADAGkIIAGANIQQAsIYQAgBYQwgBAKyhOy6JEu0SoZsOQLZjJQQAsIYQAgBYQwgBAKwhhAAA1iTUmFBXV6e6ujq98847kqTZs2frN7/5jZYsWSJJMsbogQce0NatW3XkyBEVFRXp8ccf1+zZs5NeeCahAQGIl8jPBDeYS2/DfS1j/cc1bebJPT6hldC5556rTZs26ZVXXtErr7yiH/zgB7rpppvU2dkpSdq8ebNqamq0ZcsW7d+/X8FgUIsXL1Z/f38inwYAkCUSCqEbb7xRP/rRjzRz5kzNnDlTDz/8sKZMmaJ9+/bJGKPa2lpVVVVp2bJlmjNnjurr6/X555+roaEhVfUDADLYqF8TOnbsmBobG/XZZ59p0aJF6u7uVjQaVVlZmXON1+tVSUmJWltbR3yegYEBxWKxuAMAkB0SDqGOjg5NmTJFXq9Xq1ev1s6dOzVr1ixFo1FJUiAQiLs+EAg454YTiUTk9/udIz8/P9GSAAAZKuEQuvjii9Xe3q59+/bprrvu0sqVK3XgwAHnvMfjibveGDNk7OsqKyvV19fnHD09PYmWBADIUAlv2zNx4kRddNFFkqTCwkLt379fjz32mO69915JUjQaVW5urnN9b2/vkNXR13m9Xnm93kTLAOAy2d4Fl4ybZSZr67DhnieRa780X0g6dFI1jPl9QsYYDQwMqKCgQMFgUM3Nzc65wcFBtbS0qLi4eKyfBgDgQgmthO6//34tWbJE+fn56u/vV2Njo/bs2aMXXnhBHo9HFRUVCofDCoVCCoVCCofDysnJ0fLly1NVPwAggyUUQv/+9791xx136PDhw/L7/Zo3b55eeOEFLV68WJK0YcMGHT16VOXl5c6bVZuamuTz+VJSPAAgsyUUQk8++eS3nvd4PKqurlZ1dfVYagIAZAn2jgMAWMNN7QCcctneCZcqqdynMpHuvZTtHQcAQDIRQgAAawghAIA1hBAAwBpCCABgDd1xAE457qya3ob7+qTq68BKCABgDSEEALCGEAIAWEMIAQCsIYQAANbQHXcKJOOOiYCb0PF28mzccTUR1u+sCgDAaBFCAABrCCEAgDWEEADAGhoTLErkxUKaGAB8l0xs+GAlBACwhhACAFhDCAEArCGEAADWEEIAAGvojgNwyp3Km6a5VTL+vkbquh1r526s/7imzTy5x7MSAgBYQwgBAKwhhAAA1hBCAABrCCEAgDV0x6Uh9okDkC1YCQEArCGEAADWEEIAAGsIIQCANYQQAMAauuPS0HD7NtExB7dLxj5mSI5TubcfKyEAgDWEEADAGkIIAGANIQQAsIbGhAyR6IuCNDLALWhYcDdWQgAAawghAIA1hBAAwBpCCABgDSEEALBmTCEUiUTk8XhUUVHhjBljVF1drby8PE2aNEmlpaXq7Owca50AAIt2f9g+7DFWow6h/fv3a+vWrZo3b17c+ObNm1VTU6MtW7Zo//79CgaDWrx4sfr7+8dcLADAXUYVQp9++qlWrFihbdu2adq0ac64MUa1tbWqqqrSsmXLNGfOHNXX1+vzzz9XQ0ND0ooGALjDqEJozZo1uuGGG3T99dfHjXd3dysajaqsrMwZ83q9KikpUWtr67DPNTAwoFgsFncAALJDwjsmNDY26tVXX9X+/fuHnItGo5KkQCAQNx4IBPTuu+8O+3yRSEQPPPBAomUAAFwgoZVQT0+P1q1bp6efflqnn376iNd5PJ64j40xQ8ZOqKysVF9fn3P09PQkUhIAIIMltBJqa2tTb2+vFixY4IwdO3ZMe/fu1ZYtW9TV1SXpqxVRbm6uc01vb++Q1dEJXq9XXq93NLUji4y0Txh75AGZLaGV0HXXXaeOjg61t7c7R2FhoVasWKH29nZdcMEFCgaDam5udh4zODiolpYWFRcXJ714AEBmS2gl5PP5NGfOnLixyZMn66yzznLGKyoqFA6HFQqFFAqFFA6HlZOTo+XLlyevagCAKyT9Vg4bNmzQ0aNHVV5eriNHjqioqEhNTU3y+XzJ/lQAgAw35hDas2dP3Mcej0fV1dWqrq4e61MDAFyOveMAANZwZ1VkBLrg8E3ZcsdVt3/vsxICAFhDCAEArCGEAADWEEIAAGsIIQCANXTHuVSm7rWWqXUDGB1WQgAAawghAIA1hBAAwBpCCABgDY0JWSaRLU1S2QxAAwIAiZUQAMAiQggAYA0hBACwhhACAFhDCAEArKE7DiOigw1AqrESAgBYQwgBAKwhhAAA1hBCAABrCCEAgDV0xyHlhuuyo8MO2Yrv/XishAAA1hBCAABrCCEAgDWEEADAGkIIAGAN3XFIWCJ3ZwVShe9Dd2AlBACwhhACAFhDCAEArCGEAADW0JiAlGObEqTCSN9XNCxkFlZCAABrCCEAgDWEEADAGkIIAGANIQQAsIbuOCQNXXDA/+Pn4eSwEgIAWEMIAQCsIYQAANYQQgAAawghAIA1CYVQdXW1PB5P3BEMBp3zxhhVV1crLy9PkyZNUmlpqTo7O5NeNADAHRJeCc2ePVuHDx92jo6ODufc5s2bVVNToy1btmj//v0KBoNavHix+vv7k1o0AMAdEn6f0Pjx4+NWPycYY1RbW6uqqiotW7ZMklRfX69AIKCGhgatWrVq2OcbGBjQwMCA83EsFku0JABAhkp4JXTw4EHl5eWpoKBAt956qw4dOiRJ6u7uVjQaVVlZmXOt1+tVSUmJWltbR3y+SCQiv9/vHPn5+aOYBgAgEyUUQkVFRdqxY4d2796tbdu2KRqNqri4WB9//LGi0agkKRAIxD0mEAg454ZTWVmpvr4+5+jp6RnFNAAAmSihX8ctWbLE+fPcuXO1aNEiXXjhhaqvr9eVV14pSfJ4PHGPMcYMGfs6r9crr9ebSBkAAJcY095xkydP1ty5c3Xw4EEtXbpUkhSNRpWbm+tc09vbO2R1BHca6Y6W7KEFYCRjep/QwMCA3nzzTeXm5qqgoEDBYFDNzc3O+cHBQbW0tKi4uHjMhQIA3CehldCvf/1r3XjjjTrvvPPU29urhx56SLFYTCtXrpTH41FFRYXC4bBCoZBCoZDC4bBycnK0fPnyVNUPAMhgCYXQ+++/r9tuu00fffSRzjnnHF155ZXat2+fZsyYIUnasGGDjh49qvLych05ckRFRUVqamqSz+dLSfEAgMzmMcYY20V8XSwWk9/vV6lu0njPBNvlIAl4TQin0kivTZ5q2fx9H+s/rmkzD6mvr09Tp0791mvZOw4AYA13VkXKDfc/02z+XyKA/8dKCABgDSEEALCGEAIAWEMIAQCsoTEBViRri59E2nFphnCXdGnFxtiwEgIAWEMIAQCsIYQAANYQQgAAawghAIA1dMchrdDxBGQXVkIAAGsIIQCANYQQAMAaQggAYA0hBACwhu44ZI1k7VcHIHlYCQEArCGEAADWEEIAAGsIIQCANYQQAMAauuMApLVM2E+QDsvRYyUEALCGEAIAWEMIAQCsIYQAANYQQgAAa+iOQ9ZjT7n0QBdcdmIlBACwhhACAFhDCAEArCGEAADW0JgAjCCRF8p5wRoYHVZCAABrCCEAgDWEEADAGkIIAGANIQQAsIbuOCAJEt1yJt276bJ9K6NsmWc6YCUEALCGEAIAWEMIAQCsIYQAANYkHEIffPCBbr/9dp111lnKycnR5Zdfrra2Nue8MUbV1dXKy8vTpEmTVFpaqs7OzqQWDQBwh4S6444cOaKrrrpK1157rZ5//nlNnz5d//rXv3TGGWc412zevFk1NTV66qmnNHPmTD300ENavHixurq65PP5kl0/kJGScQO3kTq4MuHmcMNx23xwchIKoUceeUT5+fnavn27M3b++ec7fzbGqLa2VlVVVVq2bJkkqb6+XoFAQA0NDVq1alVyqgYAuEJCv47btWuXCgsLdfPNN2v69OmaP3++tm3b5pzv7u5WNBpVWVmZM+b1elVSUqLW1tZhn3NgYECxWCzuAABkh4RC6NChQ6qrq1MoFNLu3bu1evVq3XPPPdqxY4ckKRqNSpICgUDc4wKBgHPumyKRiPx+v3Pk5+ePZh4AgAyUUAgdP35cV1xxhcLhsObPn69Vq1bpF7/4herq6uKu83g8cR8bY4aMnVBZWam+vj7n6OnpSXAKAIBMlVAI5ebmatasWXFjl156qd577z1JUjAYlKQhq57e3t4hq6MTvF6vpk6dGncAALJDQo0JV111lbq6uuLG3nrrLc2YMUOSVFBQoGAwqObmZs2fP1+SNDg4qJaWFj3yyCNJKhmAZKdrLNv3lEPyJRRCv/zlL1VcXKxwOKyf/vSnevnll7V161Zt3bpV0le/hquoqFA4HFYoFFIoFFI4HFZOTo6WL1+ekgkAADJXQiG0cOFC7dy5U5WVlXrwwQdVUFCg2tparVixwrlmw4YNOnr0qMrLy3XkyBEVFRWpqamJ9wgBAIbwGGOM7SK+LhaLye/3q1Q3abxngu1yAJyEVP46zsavHfn14tjE+o9r2sxD6uvr+87X+dk7DgBgDTe1AzBmNCxgtFgJAQCsIYQAANYQQgAAawghAIA1hBAAwBq64wCkDF1z+C6shAAA1hBCAABrCCEAgDWEEADAmrRrTDixn+qX+kJKq61VASRLrP/4SV/7pfkihZUML5H6MFTs06/+/k5mf+y020X7/fffV35+vu0yAABj1NPTo3PPPfdbr0m7EDp+/Lg+/PBD+Xw+9ff3Kz8/Xz09Pa6+7XcsFmOeLpIN88yGOUrMc7SMMerv71deXp7Gjfv2V33S7tdx48aNc5LT4/FIkqZOnerqb4ATmKe7ZMM8s2GOEvMcDb/ff1LX0ZgAALCGEAIAWJPWIeT1erVx40Z5vV7bpaQU83SXbJhnNsxRYp6nQto1JgAAskdar4QAAO5GCAEArCGEAADWEEIAAGsIIQCANWkdQk888YQKCgp0+umna8GCBfr73/9uu6Qx2bt3r2688Ubl5eXJ4/HoT3/6U9x5Y4yqq6uVl5enSZMmqbS0VJ2dnXaKHaVIJKKFCxfK5/Np+vTpWrp0qbq6uuKuccM86+rqNG/ePOcd5osWLdLzzz/vnHfDHL8pEonI4/GooqLCGXPDPKurq+XxeOKOYDDonHfDHE/44IMPdPvtt+uss85STk6OLr/8crW1tTnnrczVpKnGxkYzYcIEs23bNnPgwAGzbt06M3nyZPPuu+/aLm3UnnvuOVNVVWWeeeYZI8ns3Lkz7vymTZuMz+czzzzzjOno6DC33HKLyc3NNbFYzE7Bo/DDH/7QbN++3bzxxhumvb3d3HDDDea8884zn376qXONG+a5a9cu89e//tV0dXWZrq4uc//995sJEyaYN954wxjjjjl+3csvv2zOP/98M2/ePLNu3Tpn3A3z3Lhxo5k9e7Y5fPiwc/T29jrn3TBHY4z5z3/+Y2bMmGHuvPNO889//tN0d3ebv/3tb+btt992rrEx17QNoe9973tm9erVcWOXXHKJue+++yxVlFzfDKHjx4+bYDBoNm3a5Iz997//NX6/3/zud7+zUGFy9Pb2GkmmpaXFGOPeeRpjzLRp08zvf/97182xv7/fhEIh09zcbEpKSpwQcss8N27caC677LJhz7lljsYYc++995qrr756xPO25pqWv44bHBxUW1ubysrK4sbLysrU2tpqqarU6u7uVjQajZuz1+tVSUlJRs+5r69PknTmmWdKcuc8jx07psbGRn322WdatGiR6+a4Zs0a3XDDDbr++uvjxt00z4MHDyovL08FBQW69dZbdejQIUnumuOuXbtUWFiom2++WdOnT9f8+fO1bds257ytuaZlCH300Uc6duyYAoFA3HggEFA0GrVUVWqdmJeb5myM0fr163X11Vdrzpw5ktw1z46ODk2ZMkVer1erV6/Wzp07NWvWLFfNsbGxUa+++qoikciQc26ZZ1FRkXbs2KHdu3dr27ZtikajKi4u1scff+yaOUrSoUOHVFdXp1AopN27d2v16tW65557tGPHDkn2vp5pdyuHrztxK4cTjDFDxtzGTXNeu3atXn/9df3jH/8Ycs4N87z44ovV3t6uTz75RM8884xWrlyplpYW53ymz7Gnp0fr1q1TU1OTTj/99BGvy/R5LlmyxPnz3LlztWjRIl144YWqr6/XlVdeKSnz5yh9da+2wsJChcNhSdL8+fPV2dmpuro6/exnP3OuO9VzTcuV0Nlnn63TTjttSPr29vYOSWm3ONGN45Y533333dq1a5deeumluDsrummeEydO1EUXXaTCwkJFIhFddtlleuyxx1wzx7a2NvX29mrBggUaP368xo8fr5aWFv32t7/V+PHjnblk+jy/afLkyZo7d64OHjzomq+lJOXm5mrWrFlxY5deeqnee+89SfZ+NtMyhCZOnKgFCxaoubk5bry5uVnFxcWWqkqtgoICBYPBuDkPDg6qpaUlo+ZsjNHatWv17LPP6sUXX1RBQUHcebfMczjGGA0MDLhmjtddd506OjrU3t7uHIWFhVqxYoXa29t1wQUXuGKe3zQwMKA333xTubm5rvlaStJVV1015O0Sb731lmbMmCHJ4s9myloexuhEi/aTTz5pDhw4YCoqKszkyZPNO++8Y7u0Uevv7zevvfaaee2114wkU1NTY1577TWn7XzTpk3G7/ebZ5991nR0dJjbbrst41pB77rrLuP3+82ePXviWl4///xz5xo3zLOystLs3bvXdHd3m9dff93cf//9Zty4caapqckY4445Dufr3XHGuGOev/rVr8yePXvMoUOHzL59+8yPf/xj4/P5nH9r3DBHY75qsx8/frx5+OGHzcGDB80f/vAHk5OTY55++mnnGhtzTdsQMsaYxx9/3MyYMcNMnDjRXHHFFU6bb6Z66aWXjKQhx8qVK40xX7VIbty40QSDQeP1es0111xjOjo67BadoOHmJ8ls377ducYN8/z5z3/ufG+ec8455rrrrnMCyBh3zHE43wwhN8zzxHthJkyYYPLy8syyZctMZ2enc94NczzhL3/5i5kzZ47xer3mkksuMVu3bo07b2Ou3E8IAGBNWr4mBADIDoQQAMAaQggAYA0hBACwhhACAFhDCAEArCGEAADWEEIAAGsIIQCANYQQAMAaQggAYM3/AdVRA/0W+TeJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -133,7 +153,10 @@ "dataset = tf.data.Dataset.zip((dataset, dataset_labels)) \\\n", "\t.repeat(64 * 64) \\\n", "\t.batch(64) \\\n", - "\t.prefetch(tf.data.AUTOTUNE)\n" + "\t.prefetch(tf.data.AUTOTUNE)\n", + "\n", + "\n", + "plt.imshow(tf.squeeze(heightmap_labels))" ] }, {