research-rainfallradar/aimodel/src/subcommands/train_mono.py

85 lines
4 KiB
Python
Raw Normal View History

import math
import sys
import argparse
import tensorflow as tf
from lib.ai.RainfallWaterMono import RainfallWaterMono
2022-11-11 18:26:25 +00:00
from lib.dataset.dataset_mono import dataset_mono
from lib.dataset.read_metadata import read_metadata
def parse_args():
parser = argparse.ArgumentParser(description="Train an mono rainfall-water model on a directory of .tfrecord.gz rainfall+waterdepth_label files.")
# parser.add_argument("--config", "-c", help="Filepath to the TOML config file to load.", required=True)
parser.add_argument("--input", "-i", help="Path to input directory containing the .tfrecord.gz files to pretrain with", required=True)
parser.add_argument("--output", "-o", help="Path to output directory to write output to (will be automatically created if it doesn't exist)", required=True)
parser.add_argument("--batch-size", help="Sets the batch size [default: 64].", type=int)
parser.add_argument("--reads-multiplier", help="Optional. The multiplier for the number of files we should read from at once. Defaults to 1.5, which means read ceil(NUMBER_OF_CORES * 1.5) files at once. Set to a higher number of systems with high read latency to avoid starving the GPU of data.")
parser.add_argument("--water-size", help="The width and height of the square of pixels that the model will predict. Smaller values crop the input more [default: 100].", type=int)
parser.add_argument("--water-threshold", help="The threshold at which a water cell should be considered water. Water depth values lower than this will be set to 0 (no water). Value unit is metres [default: 0.1].", type=int)
parser.add_argument("--bottleneck", help="The size of the bottleneck [default: 512].", type=int)
parser.add_argument("--arch-enc", help="Next of the underlying encoder convnext model to use [default: convnext_xtiny].")
parser.add_argument("--arch-dec", help="Next of the underlying decoder convnext model to use [default: convnext_i_xtiny].")
2022-12-01 15:39:44 +00:00
parser.add_argument("--learning-rate", help="The initial learning rate. YOU DO NOT USUALLY NEED TO CHANGE THIS. For experimental use only [default: determined automatically].", type=float)
return parser
def run(args):
if (not hasattr(args, "water_size")) or args.water_size == None:
args.water_size = 100
if (not hasattr(args, "batch_size")) or args.batch_size == None:
args.batch_size = 64
if (not hasattr(args, "feature_dim")) or args.feature_dim == None:
args.feature_dim = 512
if (not hasattr(args, "read_multiplier")) or args.read_multiplier == None:
args.read_multiplier = 1.5
if (not hasattr(args, "water_threshold")) or args.water_threshold == None:
2022-11-28 19:33:42 +00:00
args.water_threshold = 0.1
if (not hasattr(args, "water_size")) or args.water_size == None:
args.water_size = 1.5
if (not hasattr(args, "bottleneck")) or args.bottleneck == None:
args.bottleneck = 512
if (not hasattr(args, "arch_enc")) or args.arch_enc == None:
args.arch_enc = "convnext_xtiny"
if (not hasattr(args, "arch_dec")) or args.arch_dec == None:
args.arch_dec = "convnext_i_xtiny"
2022-11-29 20:55:00 +00:00
if (not hasattr(args, "learning_rate")) or args.learning_rate == None:
args.learning_rate = None
# TODO: Validate args here.
sys.stderr.write(f"\n\n>>> This is TensorFlow {tf.__version__}\n\n\n")
2022-11-11 18:26:25 +00:00
dataset_train, dataset_validate = dataset_mono(
dirpath_input=args.input,
batch_size=args.batch_size,
water_threshold=args.water_threshold,
2022-11-11 18:27:01 +00:00
shape_water_desired=[args.water_size, args.water_size]
)
dataset_metadata = read_metadata(args.input)
# for (items, label) in dataset_train:
# print("ITEMS", len(items), [ item.shape for item in items ])
# print("LABEL", label.shape)
# print("ITEMS DONE")
# exit(0)
ai = RainfallWaterMono(
2022-11-29 20:55:00 +00:00
dir_output = args.output,
batch_size = args.batch_size,
2022-11-29 20:55:00 +00:00
feature_dim = args.bottleneck,
model_arch_enc = args.arch_enc,
model_arch_dec = args.arch_dec,
learning_rate = args.learning_rate,
metadata = read_metadata(args.input),
shape_water_out=[ args.water_size, args.water_size ], # The DESIRED output shape. the actual data will be cropped to match this.
)
ai.train(dataset_train, dataset_validate)