research-rainfallradar/aimodel/src/rainfallwater_embed_dataset_explorer.ipynb

91 lines
2.1 KiB
Text
Raw Normal View History

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "1f6fdebf-69c5-46ab-a5a8-f9c91f000ff3",
"metadata": {},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"\n",
"from lib.dataset.dataset_segmenter import dataset_segmenter\n",
"from lib.dataset.batched_iterator import batched_iterator"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4a6a94dd-5c4e-4481-bfae-eb5ccf6214db",
"metadata": {},
"outputs": [],
"source": [
"dirpath=\"/home/bryan-smithl/Documents/repos/PhD-Rainfall-Radar/aimodel/output/rainfallwater_records_embed_2022-10-06_contrast_embed_umap_d512e19_tfrecord\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1aa931a-ecf2-4134-8e70-87db4ae60736",
"metadata": {},
"outputs": [],
"source": [
"dataset_train, dataset_validate = dataset_segmenter(\n",
"\tdirpath_input=dirpath,\n",
"\tbatch_size=32,\n",
"\twater_threshold=0.1,\n",
"\tshape_water_desired=[94, 94]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "456f7c8f-3f7d-4a2c-b361-900588c49612",
"metadata": {},
"outputs": [],
"source": [
"i = 0\n",
"for (items, label) in dataset_train:\n",
" #print(\"ITEMS\", len(items), [ item.shape for item in items ])\n",
" print(\"ITEMS\", len(items), items)\n",
" print(\"LABEL\", label)\n",
" \n",
" i+= 1\n",
" if i > 5:\n",
" break\n",
"print(\"ITEMS DONE\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d682fb59-c6a3-4ae9-9683-2eae2f36a5eb",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}