parser=argparse.ArgumentParser(description="Train an mono rainfall-water model on a directory of .tfrecord.gz rainfall+waterdepth_label files.")
# parser.add_argument("--config", "-c", help="Filepath to the TOML config file to load.", required=True)
parser.add_argument("--input","-i",help="Path to input directory containing the .tfrecord.gz files to pretrain with",required=True)
parser.add_argument("--output","-o",help="Path to output directory to write output to (will be automatically created if it doesn't exist)",required=True)
parser.add_argument("--batch-size",help="Sets the batch size [default: 64].",type=int)
parser.add_argument("--reads-multiplier",help="Optional. The multiplier for the number of files we should read from at once. Defaults to 1.5, which means read ceil(NUMBER_OF_CORES * 1.5) files at once. Set to a higher number of systems with high read latency to avoid starving the GPU of data.")
parser.add_argument("--water-size",help="The width and height of the square of pixels that the model will predict. Smaller values crop the input more [default: 100].",type=int)
parser.add_argument("--water-threshold",help="The threshold at which a water cell should be considered water. Water depth values lower than this will be set to 0 (no water). Value unit is metres [default: 0.1].",type=int)
parser.add_argument("--bottleneck",help="The size of the bottleneck [default: 512].",type=int)
parser.add_argument("--arch-enc",help="Next of the underlying encoder convnext model to use [default: convnext_xtiny].")
parser.add_argument("--arch-dec",help="Next of the underlying decoder convnext model to use [default: convnext_i_xtiny].")