research-rainfallradar/aimodel/src/plot_metrics.py

47 lines
1.2 KiB
Python
Raw Normal View History

2023-03-23 18:00:00 +00:00
#!/usr/bin/env python3
import os
import seaborn as sns
2023-03-23 18:00:00 +00:00
import matplotlib.pyplot as plt
import pandas as pd
2023-03-23 18:00:00 +00:00
def plot_metric(ax, train, val, name, dir_output):
ax.plot(train, label=f"train_{name}")
ax.plot(val, label=f"val_{name}")
ax.set_title(name)
ax.set_xlabel("epoch")
ax.set_ylabel(name)
# plt.savefig(os.path.join(dir_output, f"{name}.png"))
# plt.close()
2023-03-23 18:09:52 +00:00
def plot_metrics(filepath_input, dirpath_output):
df = pd.read_csv(filepath_input, sep="\t")
2023-03-23 18:09:52 +00:00
fig = plt.figure(figsize=(10,13))
for i, colname in enumerate(filter(lambda colname: colname != "epoch" and not colname.startswith("val_"), df.columns.values.tolist())):
train = df[colname]
val = df[f"val_{colname}"]
colname_display = colname.replace("metric_dice_coefficient", "dice coefficient") \
.replace("one_hot_mean_iou", "mean iou")
ax = fig.add_subplot(3, 2, i+1)
plot_metric(ax, train, val, name=colname_display, dir_output=dirpath_output)
2023-03-23 18:00:00 +00:00
2023-03-23 18:09:52 +00:00
fig.tight_layout()
2023-03-23 18:00:00 +00:00
2023-03-23 18:09:52 +00:00
target=os.path.join(dirpath_output, f"metrics.png")
plt.savefig(target)
2023-03-23 18:00:00 +00:00
2023-03-23 18:09:52 +00:00
print(f">>> Saved to {target}")
2023-03-23 18:09:52 +00:00
if __name__ == "__main__":
FILEPATH_INPUT = os.environ["INPUT"]
DIRPATH_OUTPUT = os.environ["OUTPUT"] if "OUTPUT" in os.environ else os.getcwd()
plot_metrics(FILEPATH_INPUT, DIRPATH_OUTPUT)